
Numerical Linear Algebra

Least square approximation problem

PhD Program in Mathematics and Computer Science

Patricia Dı́az de Alba

Contents

1 Introduction 3

2 Least squares approximation problem 4

1 Linear systems and Cholesky factorization on normal equations with Matlab 4

2 Linear systems and QR factorization with Matlab 5

2.1 Solving a linear system with qr . 5

2.2 Solving a linear system constructing the Householder QR factorization 6

3 Matlab code to solve a least squares approximation problem 8

3 Example 14

2

1. Introduction

In this work we will try to get the best polynomial approximation of a known function
f(x) by a least squares method. It means, we will determinate the polynomial of degree
n which minimize the following norm

min
pn∈Πn

‖pn − f‖2

It would be better the infinity norm, but much more difficult so we will use 2-norm.

The method of least squares is a standard approach to the approximated solution of
overdetermined systems, i.e., sets of equations in which there are more equations than
unknowns:

Ax = b

where A is a matrix m x n (m > n), b ∈ Rm and x ∈ Rn.

So, we have to solve

min
x∈Rn
‖Ax− b‖2

to get the approximated solution.

We will solve our system by the QR factorization and Cholesky factorization on normal
equations.

In general, the QR factorization is better than Cholesky on normal equations because
the condition number in normal equations (K2(ATA)) is much bigger than the condition
number in QR factorization (K2(A)).

K2(A)2 = K2(ATA)

In the next section we will choose one function f(x) and we will construct its best
polynomial approximation by least squares solving the system by QR factorization and
Cholesky on normal equations.

3

2. Least squares approximation problem

There are some cases in which is better to do a least squares approximation to get the
best polynomial approximation of a function than an interpolation because of the data
errors.

In those cases, we get {x0, x1, ..., xm}, m+ 1 points in the abscissa, and {y0, y1, ..., ym}
which are the values of the function f(x) in every point, yi = f(xi).

Fixed a natural number n ≤ m, we want to determine p∗n(x) of degree n which minimize

min
pn∈Πn

‖pn − f‖2
2

Using the canonical basis, we have

pn(xi) =
n∑

j=0

ajx
j
i = (Xa)i, i = 0, ...,m,

where a = (a0, ..., an)T ∈ Rn+1 is the polynomial coefficients vector and X is a Van-
dermonde matrix of dimensions (m + 1) x (n + 1)

X =


1 x0 x2

0 ... xn
0

1 x1 x2
1 ... xn

1

...
...

...
...

1 xm x2
m ... xn

m


Then,

‖pn − f‖2
2 =

m∑
i=0

[(Xa)i − yi]
2 = ‖Xa− y‖2

2

At this moment we can solve

Xa = y,

by Cholesky and QR factorization.

1. Linear systems and Cholesky factorization on normal equations with Matlab

The Cholesky factorization is a decomposition of a positive-definite matrix, A, into a
product A = RTR, where R is an upper triangular matrix.

In this section we can see the Matlab code called factcholesky to solve a linear
system by this decomposition. It also measures performance with tic toc and gives the
norm ‖Ax− b‖ and the condition number, K.

4

function [x] = factcholesky(A,b)

tic

R=chol(A’*A);

w=R’\(A’*b);

x=R\w;

toc

NormC=norm(A*x-b)

K=cond(A’*A)

end

2. Linear systems and QR factorization with Matlab

The QR factorization is a decomposition of a matrix m x n, A, into a product A = QR of
an orthogonal matrix Qm x n and an upper triangular matrix R with the same dimensions
of A.

2.1 Solving a linear system with qr

In this section, we will show the Matlab code called factQR to solve a linear system
Ax = b using the Matlab function qr,

function [x] = factQR(A,b)

tic

[rows_A,col_A]=size(A);

[Q,R]=qr(A);

c=Q’*b;

R1=R(1:col_A,1:col_A);

c1=c(1:col_A);

x=R1\c1;

toc

NormQR=norm(A*x-b)

K=cond(A)

end

This code also measures performance with tic toc and gives us the norm ‖Ax− b‖ and
the condition number, K.

5

2.2 Solving a linear system constructing the Householder QR factorization

We will show a Matlab code to solve a linear system by QR factorization but, in this case,
we will construct the algorithm to get Q and R.

Before that, we have to get the Householder matrix and for that we have the following
function, Householdermatrix

function [H] = Householdermatrix(x)

[m,n]=size(x);

e1=[1;zeros(1,m-1)’];

sigma=norm(x);

k=-sign(x(1))*sigma;

lambda=sqrt(2*sigma*(sigma+abs(x(1))));

w=(x-k*e1)./lambda;

H=eye(m)-2*w*w’;

end

Once defined this function we can write the Matlab code to get Q and R, called
FactorizationQR

function [Q,R]=FactorizationQR(A)

[m n]=size(A);

Q=eye(m);

for i=1:n

h=Householdermatrix(A(i:m,i));

H=eye(m);

H(i:m,i:m)=h;

Q=Q*H;

A=H*A;

end

R=A;

end

After that, we can create a function which solves a linear system using Factoriza-
tionQR,called factQR2

function [x] = factQR2(A,b)

tic

6

[rows_A,col_A]=size(A);

[Q,R]=FactorizationQR(A);

c=Q’*b;

R1=R(1:col_A,1:col_A);

c1=c(1:col_A);

x=R1\c1;

toc

NormQR2=norm(A*x-b)

end

At this moment, we have two functions which give us QR factorization. One of them
is a Matlab function, qr, and the another one, FactorizationQR, which is the one we
constructed.

Now, we are going to write another one multiplying QH and HA in another way with
less number of operations. Because if we multiply two matrices in this way

HA = (I − 2wwT)A

we are doing n3 operations, however if we multiply in this way

HA = (I − 2wwT)A = A− 2w(wTA) = A− 2wvT , v = ATw

we are doing only n2 operations. So this method that we are going to write should be
faster.

Firstly, we have to create a function, Householdermatrix2 , which gives us the
Housholder matrix and the vector w,

function [w,H] = Householdermatrix2(x)

[m,n]=size(x);

e1=[1;zeros(1,m-1)’];

sigma=norm(x);

k=-sign(x(1))*sigma;

lambda=sqrt(2*sigma*(sigma+abs(x(1))));

w=(x-k*e1)./lambda;

H=eye(m)-2*w*w’;

end

Now, we write FactorizationQR2 which calculates Q and R with the function above,

function [Q,R]=FactorizationQR2(A)

[m n]=size(A);

Q=eye(m);

7

if m>n

p = n;

else

p = n-1;

end

for i=1:p

w=Householdermatrix2(A(i:m,i));

v=A(i:m,i:n)’*w;

A(i:m,i:n) = A(i:m,i:n) - 2*w*v’;

u=Q(:,i:m)*w;

Q(:,i:m)=Q(:,i:m)-2*u*w’;

end

R=triu(A);

end

Finally, we solve a linear system with FactorizationQR2 with the next function,
factQR3 ,

function [x] = factQR3(A,b)

tic

[rows_A,col_A]=size(A);

[Q,R]=FactorizationQR2(A);

c=Q’*b;

R1=R(1:col_A,1:col_A);

c1=c(1:col_A);

x=R1\c1;

toc

NormQR3=norm(A*x-b)

end

In the next section we will show an example with every functions we did.

3. Matlab code to solve a least squares approximation problem

Once defined all the functions above, we can make a Matlab code, Approssmq , to
solve a least squares approximation problem solving the linear system with every QR

8

factorizations and Cholesky factorization.

We have chosen f(x) = excos(x)2, 100 points and the degree of pn, 20. We have also
chosen ds = 10−2 to get a perturbation.

N=100;

n=20;

ds = 1e-2;

t=linspace(-2,2,N+1)’;

fun=@(x) exp(x).*cos(x).^2;

X = ones(N+1,n+1);

for i=2:n+1

X(:,i)= t.*X(:,i-1);

end

ye=fun(t);

y = ye+ds*randn(N+1,1);

aC=factcholesky(X,y)

aQR1=factQR(X,y)

aQR2=factQR2(X,y)

aQR3=factQR3(X,y)

x=linspace(-2,2,200);

f=fun(x);

figure(1)

p1=polyval(fliplr(aC’),x);

plot(x,p1,x,f,’r--’,t,y,’o’)

figure(2)

p2=polyval(fliplr(aQR1’),x);

plot(x,p2,x,f,’g--’,t,y,’o’)

figure(3)

p3=polyval(fliplr(aQR2’),x);

plot(x,p3,x,f,’b--’,t,y,’o’)

figure(4)

p4=polyval(fliplr(aQR3’),x);

plot(x,p4,x,f,’p--’,t,y,’o’)

This code gives us the solution of the linear system Xa = y by Cholesky and every
QR factorizations (aC, aQR1, aQR2 and aQR3),

Approssmq

9

Elapsed time is 0.009747 seconds.

NormC =

0.0840

K =

4.5700e+28

aC =

1.0016

1.0335

-0.5348

-1.2158

0.3598

1.7839

-1.8695

-3.2130

3.5732

3.5069

-3.6033

-2.2484

2.1534

0.8692

-0.7832

-0.1991

0.1700

0.0249

-0.0202

-0.0013

0.0010

Elapsed time is 0.003828 seconds.

NormQR =

0.0840

K =

1.0186e+09

aQR1 =

10

1.0016

1.0335

-0.5349

-1.2153

0.3606

1.7816

-1.8720

-3.2086

3.5772

3.5021

-3.6069

-2.2453

2.1554

0.8680

-0.7839

-0.1989

0.1701

0.0248

-0.0202

-0.0013

0.0010

Elapsed time is 0.039606 seconds.

NormQR2 =

0.0840

aQR2 =

1.0016

1.0335

-0.5349

-1.2153

0.3606

1.7816

-1.8720

-3.2086

3.5772

3.5021

-3.6069

-2.2453

2.1554

0.8680

-0.7839

-0.1989

0.1701

11

0.0248

-0.0202

-0.0013

0.0010

Elapsed time is 0.037391 seconds.

NormQR3 =

0.0840

aQR3 =

1.0016

1.0335

-0.5349

-1.2153

0.3606

1.7816

-1.8720

-3.2086

3.5772

3.5021

-3.6069

-2.2453

2.1554

0.8680

-0.7839

-0.1989

0.1701

0.0248

-0.0202

-0.0013

0.0010

It also shows every graphic solutions,

12

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 1: Approximation polynomial of f (n = 20, ds = 10−2) by Cholesky and every QR
factorizations

The first one represents the function f(x) = excos(x)2 with a red dashed line, its
polynomial approximation, p1, by the function we constructed before factcholesky with
a blue solid line and the values of f in every component of the vector t with green circles.

The second one also represents the function f with a green dashed line, the values of
f in every component of the vector t with green circles and its polynomial approximation
but in this case we solved the linear system by the Matlab function factQR that we
constructed before.

The third one shows the function f with a blue dashed line, the values of f in every
component of the vector t with green circles and its polynomial approximation but in this
case we solved the linear system by the Matlab function factQR2 that we constructed
before.

And the last one represents the function f , the values of f in every component of the
vector t with green circles and its polynomial approximation but in this case we solved
the linear system by the Matlab function factQR3 .

All of them with ds = 10−2.

In this example we can’t appreciate a big difference between them because the degree
(n=20) is not so high but, in general, QR factorization is better than Cholesky factoriza-
tion.

If the perturbation is bigger, ds = 10−1, we can see that the approximation is worse.

13

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 2: Approximation polynomial of f (n = 20, ds = 10−2) by Cholesky and every QR
factorizations

After this example, we can affirm that the QR factorization is better than Cholesky
on normal equations because of the condition number although the difference between the
norms in every algorithm is not big. We can also say that factQR3 is faster than fac-
tQR2 because of the multiplying way and when the perturbation is bigger, the solution
of the problem is worse.

3. Example

In this section we will choose a random matrix A and a random vector b to solve the
linear system Ax = b by Cholesky and every QR factorization that we constructed before
to compare the time spent in every factorization with a graphic.

14

The matlab code is the following:

vn=[50:10:1000];

for i=1:length(vn)

n=vn(i);

A=rand(n);

b=rand(n,1);

tic

xC=factcholesky(A,b);

time1(i)=toc;

tic

xQR=factQR(A,b);

time2(i)=toc;

tic

xQR2=factQR2(A,b);

time3(i)=toc;

tic

xQR3=factQR3(A,b);

time4(i)=toc;

end

semilogy(vn,[time1’ time2’ time3’ time4’])

legend(’Cholesky’,’QR’,’QR2’,’QR3’,’Location’,’Best’);

And this code shows us the following graph,

0 100 200 300 400 500 600 700 800 900 1000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Cholesky

QR

QR2

QR3

Figure 3:

15

At the beginning, we can see that Cholesky factorization and QR factorization have
a strange behavior because n is so small, but when n is bigger, they are similar although
QR factorization spends more time to solve a linear system than Cholesky.

On the other hand, QR2 and QR3 factorizations are very similar but we can see that
QR3 factorization spends less time to solve it than QR2 factorization because of the
multiplying way.

16

