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Alm of this paper is to furnish further arguments on the naturalness of the work
“A new method to exploit the Entropy Principle and Gelilean invariance in the
macrostople approach of Extended Thermodynamics” by Pennisi and Ruggeri; in
particular, it will be shown how it was potentially included in & previeus work
on Galileanity, by Ruggeri, Therefore, the salient points of this work will be here
ravised, taking care to show the above mentioned application. The notation will be
useful also for the paper *The Galilean Relativity Principle as non-relativistic Hmit
of Einstein’s one in Extended Thermodynamics™ by Carrisl, Pennisi and Scanu,
where the same results will be obtained starting from the Elnstein' s relativity
principle.

1. Expositive part

Recently, (see paper [1]}, Ruggeri and Pennisi have found a way to over-
come the difficulties arising from the galilean relativity principle in extended
thermodynamics. Here we will present new considerations on this subject,
which further show how natural the results obtained in [1] are. n particu-
lar we will see that it was potentially included in [2]. In fact, it is easy to
recognize, in the subsequent eqs. (15}, (16), (11) and (13), their counter-
parts (28) and (29) of [1]. Consequently, the approach there indicated is
not simply a mathematical tool to obtain the results, but is what expected
from the Galilean relativity principle, except for what concerns the separa-
tion of the variables into convective and non convective parts. These results
will be obtained also in [3] starting from the Einstein’ s relativity princi-
ple, thus furnishing further arguments which support them. Some details
are not explained because they are familiar to whomever knows the book
[4]. Let Fi1*n and F" & be the independent variables in two reference
frames which are equivalent from the galilean point of view, and let i be
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the velocity of the points of the second frame, with respect to the first one.
The law expressing the change of independent variables is

k)
Fivie = Z G::) Frlrihyies L gia) for n=0,---,N. (1)
Foml} . o
The same law, for n = N + 1 gives the transformation of the dependent
variable FP %41 In the sequel, we will use the relation
i
Fir' ink — Z (z) ka{l:g" ihvin_+| .. .u‘f“,] + F‘i-]-..{“ 'Uk , {2}
h=0
which can be easily proven.
Now, if k is & scalar function, the galilean relativity principle implies that

h(Fiiny = p(Fracin) (3)

Before imposing the other conditions, it is better to first change the vari-
ables; more precisely, in the literature one usually takes as independent
variables the Lagrange multipliers defined by the equations
ih
vin = T (4)
n G

which is also the law defining the change of variables. The new ones are
also called the "mean field”. Let us now see how they transform, under the
above change of reference frame. By using the derivation rule of composite
functions and eq. (1), we nhtam

Ai

iy i
ah aF“ (i i i )
)';1 v T GBF*]---' F'?l n Z ( )15 ' ---5_1:'1.1“"'1---1?‘ \
= ni=h
that is Jl i Z ( ) i "_fhjh+]“'j'ntr]n+1 cegtn (5)
nah

We note that, until now, we have not imposed the entropy principle nor
that f is its density! We have only imposed that if h is a scalar function of
the variables F™ "= then it must satisfy the equation (3).

Now, if we assume also that f is the entropy density and ¢* is its fux, we
know that this last one transforms, under the above change of reference
frame, under the law

= ¢ +oth. (6)
Similarly, in thﬁ literature the functions h and ¢* Je,re defined by
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which is a change from the dependent variables h and ¢* to h and @&,
Also for these functions, let us now see how they transform, under the
abave change of reference frame. To this end, we will exploit the following
relations

Zlu £ ‘"‘—Zku G F

=

Z /‘J,"tl i — Fivvim k} —_ Z‘}‘n *nF.ru {8}

Let us prove the first of these

N
ZJ’;I F"fl i = Z z ( ) i --‘fni',-,,+|---'!'mtrliﬂ+1 . ”U;!'mFﬁlu.t“ —

n=0m=n

_Zz(m) by g 1oe i gt gfm pfinind Z)‘“ i Fir im

=0 ram(}
where in the second passage eq. (5) has been used, in the thm:l one the order
of the 2 summations has been exchanged and symmetrization introduced,
and in the fourth one eq. (1) has been used.
The proof of eq. (8); is similar, except that in the last passage eq. (2} has
tio be used.
Now, by using (7)1, eq. (8); yields A"+ k' = h + h which, by using
B = h yields &' = h . The result is that & behaves like a sealar, e, has
the same value in the 2 reference frames!
Similarly, by using (7), eq. (8); yields  ¢* + ¢ — (A +h)jo* = % 1 g* |
which, by using (6) vields & — hok = ¢'* . _ (9)

In this way we have seen how f and ¢* transform by changing the reference
frame. Now we can impose the galilean relativity principle; because h is a
scalar function, we must have

N WX ) = h(Ag.s) that is
- i’i_ - -
h (Z (h) S VRRPRIRR L mufn‘j = R(Aj., ) {10)
n=h
This already holds in ¥ = 0, so that it is equivalent to its derivative with
respect to v, that is
aﬁ u n Fhta Ine
0= 3}.; Z k {n— h}“l.fl"'_f&_fjh-l-sznt" eyt =
Jrdh =kl
ah
_{h+l}5}ﬂ };;1 "y
=ik
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In other words, ks as sc&lm functmn if it satisfies the condition

Z(h"'l 3;\! .ﬂ ind = 0. “13

Regarding &*, the galilean relativity prln-::iple implies that the following
diagram is commutative.

[ ]

E
* @ (Np(Aa)]
N
3 (Aa) (Obtaining ¢ from eq.(9) ) 6" (Aa) — v*h(A4)

In other words

N - -
'E'Ik(Z(z) kil“'.’nih.iﬂt---_fnvjwi - rvﬂ):‘ﬁrk[}‘?l“ﬂﬁ} - Uk'h'{)":h' anle (12)
n=h

_ N-1 atfr’k .
Proceeding as for i, we find Z{h. +1) 3}.’ A - m+h6 o (1)
h=0 Judn

func-
Finally, we impose the galilean relativity principle for the constitutive
tion F%l ”HP{FE that the diagram in the next page is commutative. In

other words, we must have

N r
P“’jl---_]'N+| (Z (':) )'i1"'lnlf.+]"'ln1r€h+l e ,U‘En) —

N nml

"

.

Nt
Z+ (N + 1) [_1}N+1—hF{i1 ".'i'-h[:}"“}vjh-t-l gl
h=0 h .
(Note that F9ii~+1 can be obtained from eq. {1) with —v" instead of v*
and N + 1 instead of n). This relation becomes an identity if caleulated in
¥ = 0, so that it is equivalent to its derivative with respect to vf, that is

N
.fl? j -
Z 5F — (:) {ﬂ- - h})"ir"fh_f'ih-z-z---:nﬂahﬂ gt =

)Lf'l o meheel

Z (N;‘ 1) {N i h}{_1}N+1—hF{jt"'jh.vjk+] P EE s R
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In other words, F717v41 st satisfy the condition

aEa dmg -
Z (ot D)X gy + (N + P Odngivali 2 g (14)

b a)'i! “th
A . Ay (Aa)
Frivedng
Frivedngr
F-".?'J"'.?'HHP,'-'B{),.A}]

[
: N+1
pisine (3] f_ﬁ;( + ){ 1N+I=h Flr-dn () Jpinss .. gpdern)

Equations (11), (13) and (14) exhaust the conditions of the galilean
relativity principle. On the other hand, one could say that with the in-
dependent variables A; .; and the dependent variables F' = also these
last ones must satisfy the galilean relativity principle. This is true, but we
can easily see that this is a consequence of the other conditions. In fact,

from eq. (4) we have dh = A;,..; dF*% % from this and from eq. {711 we
have dh = Fi1~ dhg i, 18,

ah
FAgy i,
After that, we can consider eq. (10}, i.e.,

e .
- - IJI. -
h{)‘fr“ik} =h (Z (h«) }".fl"'.iih.?h+|"'_f=|wh+l '” ?"Jn) :

b

= - (15)

By taking the derivative of this relation with respect to Agyoq, and taking
nto account that Ay . depends on it only for & < k, we obtain

FH-““" =

ak koah [k
R I

)it g
.'FI “Fh

= Z ( ) F'r[h'"zh'l."!r‘*l . I,U'i»g.] ,

hmd)

that is the relations {1); then the galilean relativity principle on Fit i ig
satisfied as a consequence of the other conditions.

e
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We note that egs.(11), (13) are those listed in paper [1].
We stress that, until now, we have not imposed the entropy principle! If

Tk
we impose it, we also have Fiaink 9% . {16)
. o : HAiyin
Then also eq. (14) is a consequence of the other equations. In fact, eq. {13)
N-1
can be rewritten as Z{h + 1}EW }nh ang F héj'”“ =0,
h=0
whose derivative with respect o J'.:” i is
N-—1 P - 1
b Y o Sefin -
S+ 1) =g My +N§r—5’”} 4 Rl g g
B=0 Bt {rdna

where eqs. {15) and (16) have been used. The result is exactly eq. (14).
Moreover, we see that eq. (13), by using eqs. (16) and (15), can be rewritten

N—-1 "
a5 Z{h + 1}6‘,1‘ _?1 -fnd + h'é {Iﬂ

Festl Jrink

In this way, the galilean relativity principle implies conditions {egs. {11}
and {17)} only on the function h, in the form of partial differential equa-
tions. Obviously, also the compatibility between eqs. (15) and (16) must
be imposed, which we have found from the entropy prineiple. We conclude
by noting that egs. (10} and (12} prove the Proposition 1 of ref. [5], where
they were justified in another way and also by the fact that they hold in
the kinetic approach to this subject.
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