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where B and S are real constants, we find what follows.

(1) For PQ > 0

f - a
x(E,7) =?J'.rusecf12{ 1'&5?? {E—vr}},ﬂ= F,S: _;l:- (% ~PQ-;&D)1

which represent a localized pulse travelling with speed v ("bright” envelope
solitons ) whose width +/'P/++/Q) depends on the maximum amplitude of
the wave 1y,

{(2) For P =0

y 2 Yol P AT
X{‘E1‘}-%ta“h{ P {—UT)},R—?,S—ﬁ(?—P%),

which corresponds to a localized region travelling at a speed v ("dark”
envelope solitons).

The sign of the product P ¢} also affects the linear stability analysis. If we
seek a solution of the form

$(6,7) = vo exp (iQ Il 1) [L+ep(8r) + ]

and substitute in (15}, we get , negletting terms of order £°, the linearized
equation

dp P 8%y .
%ET“+§5—§‘+Q|%|2(W+~¢ )=0,

Taking the perturbation (£, 7) of the form

w=cy exp [P (K~ 07} + ez exp [—i (K§ — Qr)]
we obtain the dispersion relation
- ;i_z (PPK? - 4PQ |¢ﬂ|2) _
The wave is stable if the product P(} is negative. When P@Q is positive,
the condition for the instability is

K < Keg = 2,!% ol -
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THE NON-RELATIVISTIC LIMIT OF RELATIVISTIC
EXTENDED THERMODYNAMICS WITH MANY
MOMENTS- PART II: HOW IT INCLUDES THE MASS,
MOMENTUM AND ENERGY CONSERVATION.
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In part 1 of this article, Borghero, Demontis and Pennisi have obfained the limits
for light spead & going to infty, of the balance equations in Relativistic Extended
Thermodynamics with many moements. In order to obtain independent equations,
they have taken a suitable linear combination of the equations, hefore faking the
limit. What happens with this procedurs to the relativistic conservation laws
of mass, momentum and energy?  Obviously, they transform in their classical
counterparts; but proof of this property is not easy and is treated in this part II
of the article.

1. Introduction

In the paper !, a method has been shown to obtain starting from the balance
relativistic equations

awAaag---a.\; — Iﬁﬂ"'ﬂ'w
(1)
8, B an — [os grith M + N odd and M < N

their non-relativistic counterparts by taking the limit when ¢ — oc, where
¢ is the speed of light. It is interesting to observe that we have not only
transformed eqs.(1} in 3-dimensional notation in order to ealculate the Hmit
for ¢ — oa; because, if we proceed in this way, the equations arising from
eq.(1)s would be a subset of those coming from eq.(1),. In other words,
subtracting from eq.(1)s some of eq.(1); we find infinitesimals of higher or-
der with respect to £. Then, we have to make a suitable linear combination
with constant coeficients, but depending on e, such that its limit is finite
and gives independent equations. There are various linear combinations
that satisfy our requirements, but their limits are the same. For example,

[n=4



L]

the linear combination that we have chosen in ! {inthe case N =3, M = 2)
is not the same combination used by Dreyer and Weiss in ? (exposed also

#), although its limit as ¢ — co is the same. We have chosen a dif-
ferent linear combination in order to avoid cumbersome caleulations and
their difficult justifications arising frem the fact that our considerations
are valid YN and YA, The problem arises in verifving as the relativis-
tic conservation laws of mass, momenturm and energy are transformed in
their classical counterparts, through our linear combination and its limit
for ¢ — oo, These results have been obtained here. In order to briefly
describe the result, we consider the non-relativistic counterparts of eqs.{1)
obtained by the method mentioned above, Le.,

Bl 4 G Fiik = Phoie fr0<s< N -1
E&Fﬂ ArBIEL B WM 1 e BN A1 2++ {2}
+5~kF:’|---t’rks|31--- - Qil---t}. for0<r<M-1

If we start considering only eqs. (1) with & even, we obtain only the
equation (2}; with lim P = 0 {mass conservation) and Hm P% = { {mo-
o Lk
mentum conservation), but losing energy conservation.

Instead, if we consider also eq. (1)q, obviously for M odd, we prove, in this

paper, that P is infinitesimal, obtaining in this way energy conservation.
Similarly, if we consider only eq. {1); with N even, we obtain only eq. (2);
with c]ﬂll;lo F = 0 (mass conservation), but losing momentum and energy
conservation. The presence of eq. (1) with M odd affects also the produe-
tions in eq. (1)1: we will see that, always as a consequence of eq. (1)s, also
P and P* are infinitesimal and by this fact we obtain the momentum and
energy conservation. Thus, in a relativistic approach, egs. (1); and {1)s
cannot be neglected.

2. The case with N odd and M even

Obwviously, in this case is included the 14-moments one. The maximal trace
of eq. (1); gives the mass conservation law; let us express it in terms of the

Y LR R I b A LR

i

s

a7
tensor p™ %, by using also the notation of paper :
0= Iazmaw Qozos-Hopy qonw =
= mﬂn.cﬁ”(hﬂ‘zas = tﬂcztﬂa)."'{hﬂn_1aw —fap_, ﬂmN:l =
=
= Z ( ) Inz uNtﬂ?fﬂa fﬂ‘zhtﬂﬁhﬂhﬂz!.+zﬂ‘zh+a"'hﬂﬁ_1aﬁ =
h={
M
()i
hpz=l)
Mol
w (5 b N4+2 2h—1 pfiet M) gh & Ny
32 (T ) (aymgriagne prre s sy ©
h={l

which can be multiplied by ¢~V and gives

P= Z( ) M'—nir—""—' Ah— N+1PE!£I C Hoyih O N -1~k (4}

hm0

whose non-relativistic limit is lim P =10, (5]

a0
which is the mass conservation law for system (2). Similarly, the maximal
trace of eq. (1)o gives momentum and energy conservation in the relativistic
context. It reads: 0 = I3 "¥g, o Gap ,ou Which, with caleulations
similar to the ones above |, becomes

ah

I

=2

——
E] M 2 aall.Oesey..e pr g snepr_g_s
(457) oo
0

I

0=

-
I

from which, for ey = 0 and @y = i respectively, we obtain

h=ll

_ =2 e N
Py = —Zy’_\‘ (%) {_1}h+%_—2¢2h+2—MP:;€’ “EM_2-3h € M_g_gk

LI L L R o o g T T
- I - =z

] mag f M2
P;{.} — _Eg ( ;‘i ){ 1)h+—!—czh+2-ﬁ-fp

(6]
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Let us now consider the expression of @ in !, with r = 2, and let us
compute its trace, thus obtaining:

Mod

F
{ ?c —HJQBE _1_ Z |: 2{:2} qPﬁel eq.eqe,,“e”l_'_
b =
!\-' 3
+ Er_g z (—2c%) P Poieicptatotiepi (7)
pmi}

whose non-relativistic limit is 0 = (bo) ™ {(boaPpy  + apzP '), where an

overlined term denotes its nou-iela,tmsl:lc limit. By using the property
gz = —byg (see ref. 1}, we obtain

Pyt =P (®)

Note that, in the case M = 2, there isn't the term on the left hand side
of eq. (8), so that thiseq. is P "' = 0. In other words, we have energy
conservation for eq. (2);. Let us also consider the expression of Qi

in !, withr =0, by writing explicitly the terms with ¢ = 0, p = 0 and using
the expressions (6); and (4} of Py and P we obfain:

M—a

1 Q- _l bo (_E}H At f —Mz_—z {_l}h+M—2‘3-czh+4-M
eNTH=5% = T 00 =\ h

ERE] € B gk & ar ok T %__2 NAM—1-3g o =5 BT i
B,y R i D baa(=2) T e

g=1

1 %-. NpA—1—2 1 NiMo1
‘b_ﬂ Z &}m(_j]—L-—m—-‘i._, P Ep DLy epey + Eﬂm{_gj

p=1
M_3
TN Wit Erer ey o

( f‘i ){—ljh"' 32— N3 pt L E A i (9)

h=0

whose non-relativistic limit is

0= _MT_%D( 2}&5@{_ljﬁf—3ﬁ£tfl —bm(—ﬁ}_ti__ 216

e1El s 1 N == EiEg
+E‘Im{_2}wf‘ +bloﬂnu[—2}_-%L T(-I}N o 2

which, by using eq. (8), becomes
0 = [Boo{M — 2)(—=1)™"2 4 byp + @10 + age(N — 1)(—1)¥] P that is

TR
S

i
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i]-.=[]|rf (=12 f by = (N = J‘rf} bip = (N —1)(— jpem.=
=P S

In this way we have obtained energy conservation for the system {2). It
remains to prove momentum conservation. To this end, let us consider the
expression of Q'+ in ! with r = 1; by writing explicitly the term with
q = 0 and using the expression (6) of F}}, we obtain

M—Z

Q" (~2¢ 1—a——— Zbﬂ{ 2e2) Pl et

N_3

T
+&l Z ﬂpl{_Ecﬂj—ppﬁeie....epep +
{Showar

M’ 4
1 M-g P i 1818 T mRh € Af D0k
_Fbﬂl E ( h ){ 1}h+Tc2h+2 ijLf - -
1
hm0

whose non-relativistic limit is 0 = f;aml_:‘ *ohut agy = —byy = —1, so that

it remains P =0, i.e. momentum conservation for the system (2).

3. The case with N even and M odd

Eqs. (4) and (6) still hold, but after exchanging M and N, P and Py, Py}
and P, ie.,

A —3
¥ M1 B18) B A 1-3h EAf—1-Th
Py=7) ( h )( 1) S M py ’
h=0
N4
E M N—z €181 EN_3_2k €N _2_2h
S5 () o g
rd h
: T N 2 EqE].0E
Pr-:|=_Z( ){ 1}h+— Ah42— NPIII hi;iﬁa”-%-ﬂl[lﬂ}

h=0
The non-relativistic limit of {10}z 3 can be quickly computed and equals
F =0 P' =0, ie, we have mass and momentum conservation for the
system {2). It remains to prove energy conservation. MNow the passages
after eqs. {6) and until eq. (&), of the previous section, can be adapted also
to the present case (there is only to substitute the upper values of ¢ and p
with 15-"';—3 and % respectively), so that eq. (8) still holds in the present
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case. Now the expression of Q"% in ! with r=0, by exploiting the terms
with q=0, p=0 and using eqs. {10); 3, gives

T TR 1 ﬁ!_-&
Q(_ECE}—_J-l-_ - bqg{_zcz}uq+lPE;€1...¢q¢q +
bo =
L fgp(—2¢)"PHL pereiepen _
bo =
B
Qli-’im Z (%_1) {H1]h+%'—tczh_m+ap;e" BMo1-2h EM_j—gh N
bﬂ =l h
A W '
Eiam Z (Tﬁz) E_l}h+£§3c2h—N+4Pclﬂ1 '-GN—ﬂ—ﬂbel\_;_a:_an
Bo ho \ B
whose non-relativistic limit is
1 M—1 _
0= E |:blﬂ+alﬂ_2ﬁm 5 {_I}M_Z'FEEIMN 2{—I]N-3 Fele! _

1 - 181 = E1€1
= 4ol = (N~ M) —bio+ M1+ N -2 F =§-[2M—3]P
i

from which P “ = 0, Le. we have energy conservation for the system (2).
In this way all our aims have been accomplished.
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EXISTENCE AND ENERGY CONSERVATION FOR THE
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The paper presents & recent result by the author concerming Maxwell molecules,
without any cutoff in the collision kernel, in the one-dimensional caze. Conservation

of energy also holds.

1. Introduction

The well-posedness of the initial value problem for the Boltzmann equation
means that there is a unique nonnegative solution preserving the energy
and satisfying the entropy inequality, from a positive initial daturmn with
finite energy and entropy. However, for general initial data, it is difficult,
and until now not known, whether such a well-behaved solution can be con-
structed globally in time. The difficulty in doing this iz obviously related
to the nonlinearity of the collision operator and the apparent lack of con-
servation laws or a priori estimates preventing the solution from becoming
singular in finite time.

The existence theorem of DiPerna and Lions® is rightly considered as a
hasic result of the mathematical theory of the Boltzmann equation. Unfor-
tunately, it is far from providing a complete theory, since there is no proof
of uniqueness; in addition, there is no proof that energy is conserved and
conservation of momentum can be proved only globally and not locally.

It seems rather clear that in order to achieve some progress in the study
of the initial value problem for the nonlinear Boltzmann equation and prove
that the typical solutions have more properties that those proved in the
theorem by DiPerna and Lions, more o priori estimates are needed. We
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