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for all ¢ = 0. It is not difficult to see that there exists a range of values
for the parameter o where (2.18) is satisfied by virtue of the structure of
(2.7).

We can now summarise our findings in the following theorem, formu-
lated in terms of the original state variable wu.

Theorem 2.1. Let o = 2/T and let the initial data satisfy the conditions

f{'ﬂ[m,y, 0) —1)Pdzdy < .J*,
0

where J* is the smallest positive root of f(J} = 0 where f(J) is as in
(2.7} Assume further that the initial date setisfy the conditions (2.14)
and (2.16) and that o is in the range so that (2.18) is also satisfied. Then

the solulton u(z,y,t) of (1.1) satisfies u{z,v,t) = 0 for all t = 0 and all

(z,y) €8, and ||ulz,y,t) — 1|0 — 0 a5t — 400,
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THE NON-RELATIVISTIC LIMIT OF RELATIVISTIC
EXTENDED THERMODYNAMICS WITH MANY
MOMENTS- PART I: THE BALANCE EQUATIONS

F. BORGHERO, F. DEMONTIS AND 5. PENNISI
Diportimento di Matematioa ed Informatica, Undversité di Cagliari, Via
Ospedale 72, 09124 Cagliori, Haly; e-mail:
borghero@unica. it fdemontisGunica. o spennisi@unica. of

The non-relativistic limit of Relativistic Extended Thermodynamics with 14 mo-
ments can be found in a paper by Dreyer and Weiss, which has been widely appre-
ciated. In particular it suggest a particular structure for the classical counterpart
of the theory, in particular that developed by Kremer, instead of the previous one
with 13 moments. The same thing needs to be obtained with an arbitrary but
fised number of moments, and this is the object of the present paper. Also our
results predict a particular structure for the classical counterpart with many mo-
ments, and it is not the simpler one. Moreover, from the pessages here involved,
it is evident that the deviatlon from the dominant parts of the equations iz of the
second order with respect to 1/, with ¢ the speed of light, This is interesting also
for future applications; it suffices now to remember that the Meaxowell equations are
linear with respect to 1/e

1. Introduction

The above mentioned paper by Dreyer and Weiss can be found in [1] and {2].
Here we extend their methods for the case with many moments following
the macroscopic approach. In this way we obtain very interesting results.
For example, we see that the relativistic theory seems to suggest a particu-
lar structure for the balance equations (see eqs.(2} below) in non-relativistic
extended thermodynamics. It is noteworthy that in this structure the in-
dependent variables are moments of increasing orders; the highest of these
is even, as in the kinetic approach! To be more precise we consider the
following balance equations for the relativistic approach

aU‘Aaaz R — IEI?“'&N . aﬂBﬂﬂz'"ﬂM — Iﬂz"'nnf EI}

where M and N are assigned numbers. It is not restrictive to suppose that
M < N. These equations contain alse those with lower order of moments
because of the trace conditions A%%* ®V-iqy_) = —mge? A% ®¥-2 and
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gimilarly for B, where mq is the rest mass and ¢ the light speed. Con-
sequently, in order to obtain independent equations, one among M and NV
has to be even and the other odd, i.e., M 4+ N iz odd.

Another consequence of the trace conditions is that the maximal traces of
eqs.(1) are the conservation laws of mass, momentum and energy. We will
see that the non-relativistic limit of eqs.(1) has the form

By § gy itk iy
ﬂtF'ii---irGJCj" Ei%_’—_ﬁe-&hﬂfl.——t n ﬁkFii“'frkelﬁl'“ _ Qil"'ir |:2]|

for 0 <5 < N-10<7 < M-1. Al of the properties abave de-
scribed follow easily . In particular, when M = 2, N = 3, eqs.(1) are
the pertinent equations of the 14-moments theory of relativistic extended
thermodynamics [3] and eqs. (2) are the corresponding equations for the
non-relativistic approach [4]. We note that the highest order of moments,
among the independent variables, is M + IV — 1, which is always even; this
confirms the same property obtained by the kinetic approach in order to
have integrability, i.e., that the integrals involved must be convergent.

2. Suggestion from kinetic theory.
Because the form of equations (1) is suggested from the kinetic theory of

gases, it is not restrictive to deduce from this theory the orders of great-
ness of the moments and productions with respect to e. Meanwhile, we
obtain this information also for the entropy and entropy-flux tensor A%, In
particular, we have

Aoy _'_;: O ity | i dptdpdp®
0%, L e tde

he = [ GIf(er, 5", p')|p~ St
whers }; is t.he relativistic distribution function, p* = mgu®
[1mv(u}c, mayiu } is the relativistic momentum particle, -(u)

_.'L

(1 — f;-) is the Lorentz factor and (& a suitable function of _f .
By changing the integration variables from p* to u', we see that the Jaco-
bian of the transformation is J = ‘gf; = I?ngﬁr{u}&‘f + mg ;i:-u‘u-f = mi~y®
and the above integrals (3} transform into

(3)

M—a

m—,
A= .crsﬂ. . |:| mg’+2 N-s-lFﬂ.--i;’ hﬂ — mﬁm fli —_ %3‘#,!‘ with

Byt = [ Frvetuttoutvau, h=[ GPrPan, & —[ 6(Fntuidn. (9

i '-'.':= A

e

e R S A
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Now eqs. (1) can be written as lé‘tfl““z“'““'+ElkA"“3"'“"' = [%*2-2¥ which
can be written for as...ay =i ...1:0.. -0 and becomes the ﬁrst of the

following equations

{ B Firte L g Pl e = Pavds for 0 < s < N — 1

e Fiyie 4 gy Fkids o Paie for 0 < < M~ 1 ®

with

ﬁ;l...isz m[;N-zﬂ_N+S+ZIRr'“i5¢"'ﬂ1 ﬁ;}...frz m‘;M—Qc-ﬁ{+r+21;;...zrﬂ-...ﬂ{ﬁ}

and, obviously, eq.(5)2 is the counterpart of eq.(1)a, where B~ 2% is defined
in the same way as A%, Similarly, the entropy law J,0% = o becomes

Fh + Opd® = s = myco. (7)

Egs.(5) are still relativistic, although expressed in 3-dimensional form.
Their limits as ¢ — oo don't give independent equations, because from
eq. {4] it follows that lime_ .o F L [ F'""’ r 'In other words,
F“ F et g higher order infinitesimal with respect to ¢!, so that
we have to find a suitable linear combination of eqs.(5) and multiply the
result by an appropriate power of ¢, before taking the limit. This will be
done in the next section.

3. A new form for the system (5).

Let us consider the numbers

k
b (—1)" ( ) {”:—f}-!l (N~ M —2n,N — M — 2n + 2k — 2)(8)
where iz, b) denotes the product of all odd pumbers between e and b if
< b, while it is 1 if @ > b moreover n = [£=1=], m = [H51=T].
Obwviously, by = 1. In the appendix the following will be proved
Proposition 3.1: The numbers defined by eq. {8} satisfy the equations
m

> breCaigon = jmirbe,  for j=1,...,m+1 with (9)

h=0

c,r-,,—%- (N = M—2h+2,N - M), (10)
! I

b = (=1)" ——— T (N~ M—2n,N—M+2m). (11)

(n+m+ 1) {n+m}!
Let us also consider the numbers

inf{k, (A==}

Ry = = Z

=}

burckons for k=0,...,[E51=2]. (12)
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After that, let us consider the following linear combination of Fit "% and

of Fiyiee:
M—i—r
Fh.--i"u“e’"'E.{‘_';LH.:—_[—?rGN-.'-M_:._g‘-__ [ |

qmi

fi e g
St

!
+ Z g ;} dpdyey e e.ﬁ.r.pa,[ 26 { Ecg}izi “3}
p=0

where the index a has to be omitted if it is zero. Note that this tensor has
N+M—1-7>N—1indices (if a = 0) 50 that there is no possibility of
confusing it with Fii ™. The corresponding linear combination of eqs.(5)
gives eqs.(2)s, while eq.(2); is eq.(5); except that now the index N has
been omitted. Chviously, we also define

[M5=T)
éi.--.t’,. — bl E bgr{—zc;}%liﬁqﬁ;}l -i.re;ey--e..,sq_!_
F= HAr
+ &_ Z _Ecz}ui_—iiﬂzﬁ,l...i“ﬁc!, ot {14]
r )

where the property [£=1=7] + [M=l=t] = N4M_3-2 h,5 heen used (it is
a consequence of the fact that ¥ +IE! is add). Tﬁe interesting thing, which
we Tow prove, is that

[ & e

and we indicate this imit by F° 0 SEMASEn S NEM a1 e over,

wislifa=0,isu*fa=kand f= Iimc_,mmﬂf as in [2] (in the sequel
the factor m{ does not affect the results, so we will omit it). To prove
eq.(15}, we see that {13), by means of (4) gives

e e =bi(rz¢2}—*—»—"' et [F N g
r

[M=ler) (#5551
TN b (@) 2) 3T a0 (2P| du. (16)
g=0 =0

Let us denote the expression between square brackets as | ++]; by inserting

= E&:I} EC}L uz}h(—gﬂ )‘_h

MN=0
the expansion of ()~ = (1 - %;)T

Z bqrﬁ;;:..-;,-glcp- cchﬁ{_zcﬂj—q_i_

hmFF: =rﬂ£|¢1"'L‘-NiM:|_2r€Ni£_]_2r=ffui. . u.'é‘*u“(uzj N+M_‘I"2&u,{lﬁ)

AR 8 T
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it becormnes
[-]= [ca + e (—2e) 7 + .+ r:h.(u?]lh{_.—iczj_h] .
[ [N 1— r]
lbm ’ blruﬁ{_zﬂg)_l *e-et b[.w -21-,-].# (%ﬁi) + Z ﬂ'kr[u‘g)k
=0

oo inflk,[2=E=51) 2\ E {H=g=1) u? "
f—ﬂci}_kzé hz—u BrrCiomn (@) + kzpc. ey ('_‘Ez") -

Now, the tensor for k < [2=1=T] disappears for eq.(12), while those with
[H=l=r)+1 <k < [P r]+[lhf L=t} = m +n disappear for egs.(10) with
§ =k —n (note that 1 < 7 < m). It remains to consider the terms with
k== m+n-4 1 and those of higher order, ie.,

[o] = (~2) ! [ib};rcm+ﬂ+1—h (7 B (E:lhﬁ)l i

Fe=ll
Inserting this result in eq.(16), using eq.(10) with § = m + 1, and taking
the limit as ¢ —+ 0o, we obtain eq.(15). This completes the proof.

4. Appendix
In order to prove the properties (10} and {11), we first state the following

Lemma 4.1. For every k € [0,m — 1] we have 3}~ (-1)" (’;:) hF = 0.

Proof. We proceed with the iteration method with respect to k. The
property is true when k = 0 because, in this case, the first member corre-

sponds to (—1 +1)™ = 0. If we assume that it is true up to a fixed integer

k< m — 2, we have
_
(h—l)h

m

Z':_l}h (’-’;:)hhl Z{ 1} ( )h“‘] mg

h=0
)h"—!]

Cm Z (
where in the third passage we have put h =5 4 1. O

zmi)

Now we consider the fca].lnwing functions

P 4+ — R + 5}
_f[n,m,N—M,j}—Z( " (n) - n! j{niiji}h}!-

h=0
(N —M—2n,N—M—2n+2h—2)-
(N=M—2n—2j+2h+2,N =M —2n—2j+2m) . (I7)
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It is easy to prove the following Proposition 4.1: * f{n,m, N—M,1) = 0."
Proof: We have
flnym, N — M, 1) = 8l (A — 90 N — M —2n — 25 + 2m) -

m ie=h]! Ti —it )l
I -—Ijlh ( h) %T'_'_—Hf% where the factor 31 (~1)" (r;:) {ﬂ'_':;'__ & |I

is equal to zero both for the previous lemma and because of m—:::]]lr is &

polynomial of degres m — 1 in the vatiable k.

Proposition 4.2: " f(n, 1, N — M, j) = —d;2(N - M +2) for §=1,2."
Proof: We obtain f(n, LN —M,5) = (n+1)(N =M —2n—25+2) —
{(N=M=2nj(n+j)=(N—M—2)(1 - 7), with easy calculations.
Proposition 4.3: "For every j = 1,...,m,m + 1, we have

fln,m, N = M,§) =8 mp1n(N =M +2,N = M +2m) (=1)" ml.»

We omit the proof for the sake of brevity.

Corollary: ” f(n,m, N — M,j) = {1~ j) (2= j) - ...+ (m — j) -

(N =M+ 2N — M+ 2m)".

Proof: We observe that first and second member in this equation are
polynomial of degree m in j (for the first member it is consequence of the
fact that [TE'%—%! =i(n+jln+i—1)...{n+7—h+1) and this expression
has degree hin j while (N — M —2n—2j4+2h+2, N — M —2n —2j +2m)
has degree m — A in j). Moreover these members give the same results in
the m + 1 different values j = 1,...,m+ 1.

Now we can prove the property 1: to this end it suffices to substitute eq.(8)
in the left-hand side of eq.(9) and to use the definition (17); after that the

identity

(N =M =2n—2j+3h—2 N—Af)
T — M —Zn— B Eh 3, N — M —2n_ 23]
has to be used and the proposition 3 to be applied.
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HYDRODYNAMIC MODELS FOR A TWO-BAND
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In this paper a hydrodynamic set of eguations s derived from a Schridinger-like
modal for the dynamics of electrons in a two-band semiconductor, via the Madelung
ansatz. A diffusive scaling allows to attain a drifi-diffusion formulation.

1. Introduction

Recent advances in semiconductor devices design have compelled the sci-
entific community to provide theoretical models that take fully into ac-
count the quantum dynamiecs of carriers. For example the Resonant Inter-
band Tunneling Diode (RITD®) is built on the quantum effect of tun-
neling of electrons between conduction and valence bands. Multiband
models!'*? derived from the Schridinger equation are the starting point
of a recent series of articles®*® that propose a two-band description in
terms of Wigner functions. However, in the perspective of numerical sim-
ulations, quantum hydrodynamic models®"'? are preferable, since they
involve directly macroscople quantities and they admit natural boundary
conditions. The Madelung equations eonstitute the fluiddynamical equiv-
alent of the Schrédinger equation and they are formally identical to the
Euler equations for a perfect fluid at zero temperature, apart for the Bohm
potential?. Analogously, two-band zero-temperature quantum funiddynam-
ical models’® can be derived by applying the Madelung ansatz either to
the two-band Schrodinger-like model introduced by Kane'l, or to the MEF
{Multiband Envelope Function} model'®; the latter one, at difference with
the Kane model, seems to be reliable also in presence of heterostructures
and impurities of the semiconductor material. Here, the derivation® is ex-
tended to the case when the electron ensemble is described by mixed states:
Madelung-like equations for each band are recovered, coupled by “interband
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