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Relativistic Extended Thermodynamics is a very interesting theory .
which is widely appreciated. Here its methods are applied to ultrarela-
tivistic gases, and an arbitrary, but fixed, number of moments is consid-
ered. The kinetic approach has already been developed in literature; then,
the macroscopic approach is here considered and the constitutive functions
appearing in the balance equations are determined up to whatever order
with respect to thermodynamical equilibrium. The results of the kinetic

approach are a particular case of the present ones.

1. Introduction

Relativistic Extended Thermodynamics is a well established and appreci-
ated physical theory (see refs. [1,2] regarding the first pioneering paper
on this subject and an exhaustive description of the results which has been
subsequently found). More recent results regarding the kinetic approach are
described in refs. [3-6] and many interesting properties are there obtained
and exposed. The macroscopic approach has been also investigated, but
the exact solution of the conditions which are present in Relativistic Ex-
tended Thermodynanics, for the case of an ultrarelativistic gas with many
moments, is still lacking. This gap is here filled, and it is shown that the
general solution can be obtained with little, but meaningful modifications

of the kinetic approach.
The balance equations of Extended Thermodynamics for an ultrarelativistic

gas with many moments are

B AP B — [P Bn forn =0, N. )

The tensors Aaﬂl'_”ﬁﬂ and I8P~ are symmetric and trace-less. In particu-
lar; A% is also indicated with V'@ and denotes the particle number-particle
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flux vector, while A%t is also indicated with T2, i.e., the stress-energy-
momentum tensor.

The entropy principle for the balance equations (1), thanks to Liu’ s The-
orem [7], amounts to assuming the existence of the Lagrange multipliers

'Bs,...6,, symmetric and trace-less, and of a 4-vectorial function A" (re-
lated to the entropy - entropy flux) such that
8hla
(2)

QO g ey -
AT —62'@1‘6Pﬁ1 ﬁrﬂi

N
Z Eﬁl...ﬁnf‘glmﬂ“ >0,

. n=2
where the Lagrange multipliers have been taken as independent variables
and Pal_'_'_z"‘ is the constant tensor such that, for every tensor BS1fn
the new tensor BPvBn po172n is symmetric, trace-less and is equal to the
sum of B*""%~ and of a linear comhination of its traces through constant
tensorial coefficients. Its expression can be found for example in ref. [8]

and reads

[n/2]
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with P deﬁned by the following recurrence formula
n 1 . n—2sn—2s—1 n
SHL™ 47 p—s  s+1 0

Now, the eq. (2) show that A%$1P= are known in terms of A'® and their

symmetry impose conditions on the representation of A*.
There are now three ways in which to proceed:

(1) Approach at a macroscopic level: It uses the representation theo-
remns for isotropic functions to write down the most general expres-
sions for h'®, IPrBn. after that, the symmetry conditions and the
zero trace conditions for (2); impose restrictions on h’®, while (2)2
does the same for It "P»_ This approach is here used in an ex-
pansion around thermodynamical equilibrium and up to whatever

order.

(2) Approach at a kinetic level: it proposes h’*, except for an arbitrary
single-variable function f(x), as

/F (Zo+ g, 0™ + -+ 5g,..on P PﬁN)PadP (3)
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where p® is the 4-momentum of the particle so that we have
p%pe = 0 and dP = V=9 d—”l—g}%?@i is the invariant element of mo-
mentum space.

It is easy to see that the expression (3) satisfies the symmetry and

the trace conditions for (2)1.
This expression has been obtained by Boillat and Ruggeri 5], who

have studied also interesting mathematical properties of the subse-

quent model.

(3) A generalized kinetic approach : It is here proposed starting from
an arbitrary function f of N + 1 variables f (Xo,X1, - ,Xn) and

defining
he = /F( 3, Eﬁ1pﬁla' e :251"'ﬁNpﬁ1 o 'p'@N )padP ) (4)

It is easy to see that also this expression satisfies the symmetry
and the trace conditions for (2)1. It is also proved that the first
and third approach are equivalent, so that we can refer to the third
approach also as the macroscopic approach.

We note that, in the kinetic approach, the distribution function at equi-
Jibrium is determined in terms of F(ZXo + ¥5,p"1) so that the distribu-
tion function outside equilibrium can be simply obtained by substituting
Yo + Eglpﬁl R 2,31...ﬁNp51 PPN to Lo + Y, p7t. Instead of this,
the macroscopic approach (3) has F'(Xo, 2, p?,0,---,0) for the determi-
nation of the equilibrium distribution function and its knowledge doesn’t
determine F outside equilibrium. This is the reason of the one parameter
family of single variable functions, arising from integration, which appear
in the macroscopic approach. We remind also that the counterpart of this
model with only 14 moments has already been treated in [9)].

A similar result for the non ultra-relativistic case would be desirable, but
it hasn’t until been proved. '

In the next section the generalized kinetic approach will be exploited ; the
first approach will be considered in section 3 and proved that it is equivalent

to the third approach.

2. The generalized kinetic approach

A particular general exact solution can be found as follows:
A particular case of eq. (4) is that with F' an homogeneous function of
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degree h; in the variable X; fori =2,--- , N, ie,
F = Py e (X0, Xa) (X2) - (XN)™

in which case eq. (4) becomes

h' Y
B [ Fine o (5 B0?) B 90 - (B ) 0P =

./th, A (2 E.Blpﬁ )pe Lophona L pha copine . pAn +o - ptNRN p*dP -

D PREE EA2h2 REPIVRLE EAihi SRRV TR EANhN ? (5)
where A;. is a symbol standing for Bi,---Pir and pAir stands for

ﬁlf‘ Bﬂ"
preeep

Now, if two functions A'® are such that the corresponding Ac@1C= are
symmetric, also their sum satisfies the same condltlon so that the solution

| (5) can be generalized into

o0 M-hay—-—hy M—hiy1——hnN M—-hpn
fox T
T ST SR S Sl ST
M=0 ho=0  hy=0 hy_1=0 hy=0

Azye-Asny--AirAing AN ANny o
B,
ho, hN

Sap S, Lan D, DAm - Dgny
which is expressed as sum of homogeneous terms of degree M, with respect

to equilibrium, and with

AnqAgp. - A ' -
Bh;,l_ h;hz 11 A AN] ANhNa . B (7)
/th 2 Eﬁpﬁ)pflzl .. .pA2h2 . .pA'il .. .pAih.; .. ,pANl . ,pANthcde.

This last tensor can be calculated by integrating; because it is of the type
B = / Fh??"' Ny (2) Eﬁpﬁ)pal o 'papdp ) (8)

we will refer to this simplier expression; by integrating as in ref. [9], we

find

(p/2]
4
By = 3 (-1 A TR 0 R (0
5=0 ( )28-1—17 Pz, ,hN( ) ()

ajc Qg1 C g o
h( 102, pO2s-1%2s [JO2s+1 .. [T p)’
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where v = (~SFD )2, U%= (—ZHE,) 728, (10)

1

h,a'@ = ga,ﬁ + UaUﬁ s Ghz,---,hN(Z) / th,... ,hN(E,J)O'p+1dO', g = Eapa_
0

We note that the function Gh, ... ny (%) in eq. (10)4 is arbitrary; in fact, if
it is given, we can define

Fpy oo pn(8,0) = Ghz,.;.,hN(E)emg, (11)

(p+ 1)!
which vields again eq. (10)4. In the next section we will prove uniqueness

of the solution so far obtained.

3. The general solution of the macroscopic approach.

Let us impose the symmetry conditions and the 2ero trace conditions for
‘eq. (2)1; regarding the second one of these conditions we see that

(1) when n > 1, Ao, = 0 is an identity for the pres-
ence of the tensor Pgll.'.:'ﬁci“ and similarly we find zero, if we con-
tract the index o of A®®1~@n with another of its indices, because

AcaraiaiQng o= A,L]_Ciﬂj"ll'“o‘i“'Q“"C"ﬂgqai = 0, where the sSym-
metry of A @~ has been used and «; is any other index different

from oy.

(2) when n =0, there is no trace condition for eq. (2),

(3) when n = 1, the trace condition is

oh'e .

———g*P = 0. 12

P (12)
In other words, the zero trace conditions reduce to eq. (12).

Let us now consider the polynomial expansion of A’* in the variables X 4,,
oo, Bay andcall A3 0 the homogeneous part of A’* of degree h; in 24,
fori =2, N; let us see how it is restricted by the symmetry conditions

6h/[a
Pal]...an . 0
8%gs,..5, PP

which arises from eq. (2). Obviously, R . 5, 18 restricted by (13) only
when we impose this condition at the order h; in Y4, for i # n and at the

(1-3)

¥
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order h;_1 for 2 = n. Moreover, this restrictions don’t link h;f; hy to the
other orders of A’*. Similarly, the equilibrium value of A%, ie. hor.. o) 18
restricted by (13) only for n = 1, and doesn’t link it to terms of the other
orders.

Then, A'® is a sum of functions of the type h}f’;’___ o which are restricted
only by egs.(12) and (13). Therefore, we can restrict ourselves to consider
such restrictions only on h;f;,_‘_ i |

Now this tensor, being a polynomial, coincides with its Taylor’s expansion
around the values X4, = 0,--»,Z4y = 0: in this way we obtain the
‘equation (6) with

1

Azr--Aspy - Air o Asny ANt ANny o 1
Bh2“'hN 7 puumeny h ! - h ' (14)
' — (h)t (AN)!
hot+hy o
o MR
82;321 T azﬁzhz T '-82;351 Tt 62.3%@ T 62;31\'1 e 62,@1\”1”—
AZI + " m A2h2 LI I} Ail « & 0 Aihi LI I ANI - -. + A2NhN
’Ple- P32h2 PBu PBihi Bni PBNhN J

where the tensors P take into accounts the fact that Xg, ...g, is traceless.
, i Aoqy-Aopn A Asn, ANy A
Now we see that in the tensor Bh;f_ I 2hyrAa Aihy T ANVTANAN S defined

by (14) we can exchange a with any other index, as consequence of eq.(13)
or of a suitable of its derivatives. It follows that it is a symmetric tensor;
in fact for any couple of indices 8 and -y, we can exchange o and 3, then (3
and v, after that -y and a, i.e.:

B""G""T"'a — Ba.-fg — B...a...g...»y — B’y ...... a

Moreover, B! is traceless because in BB gpy We may use the sym-
metry to carry B and v in indices of the same temsor P!’ and, af-
ter that the trace is zero. At the end we find the eq. (6) with
Bh, . by AzreAgny - An-Aing AN ANey @ gymmetric and traceless; more-
over, from eq.(13) with n = 1 and eq.(12) we have that also its derivative
with respect to X, is symmetric and traceless. Vice versa, if these condi-
tions are satisfied, then eq.(12) holds and also (13).

In order to simplify theé notation and work with less indices, let us char-
acterize a tensor B®1®2 @ which is symmetric with its derivative with
respect to 2, and with zero trace. The symmetry of B*1%2"%r shows that

it has the form

[p/2]
Borap Z (;;) 1 9p,25(§ ’ ,},)h{ma? ... p¥2s5-1025 [J2S541 .Uap_) .
S_

25 +1
(15)
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In the Appendix A of ref. [10] it has been proved that the tensor -‘?y
“p+1

is symmetric iff g, g satisfies the following recurrence formula

g = : —25+1 . 16
9p25-2 = 55T ¥ By + (p + )Qp,28} (16)

This equation determines all the functions gp,25 except for that with the

. greatest value of S, i.e., gp 2[p/2]-
Similarly, with the same calculations of Appendix B in ref, [10], we obtain

that the condition

x]oepley & _
B pgalag - 0

" can be expressed as

Gp2s+2 — Gp,2s = 0. (17)
This equation, together with eq. (16), reduces to the ordinary differential
equation

Ogp,28+2
o

which can be integrated and becomes
gp,25+2 — ("1)}9471”@}@2;... AN (2)7—(P+2) ,

with (—1)P4nGh,,... sy (5) & constant arising from integration. After that,

the other relations in egs. (16) and (17) are satisfied.
In this way the eq. (9) of the generalized kinetic approach has been obtained

with G, ... ny an arbitray function of X.
It remains to impose the condition

+(p+ 2)gp25+2 =10,

oByLy " -
ho--hy —0. (18)

62 ga'y

But, when at least one of hg, -+, AN isn’t zero, the tensor Bh2 . has
at least another index which we have called «;; moreover, v and oy can
be exchanged because we have already imposed the symmetry condition.
Therefore, eq.(18) becomes ?-%g—ﬁm- gany = 0 which is an identity, because
By, s traceless. Then, eq. ( 18) has to be imposed only for hp = -+ =
hyn = 0 and becomes

ohg

5%, Qa'v 0, (19)
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where hg; denotes the value of 2’® at equilibrium. Now, for the represen-

tation theorems, we have

0
Beg = ho(Z,7)U?, so that eq. (19) becomes 'yai’yg +3ho =0,

ie., ho = Y 2Ho(Z), ie., hiZ has still the form (9) with p = 1 and

Go(X) = '_417{0. This completes the proof that the macroscopic and

the generalized kinetic approach give the same result.
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