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Abstract An elegant formulation of thermodynarmcs in electroma crnetw fields has been pr0v1ded by Lin and MuHer
and is.based upon the conservation laws of mass, momentum and energy as well as on Maxwell’s equations. However,
in other physical context it has been shown the opportumty of considering an extended set of independent variables.
Therefore, it is fitting to follow an extended approach also for charged fluids in electromagnetic: fields; ia literature
this methodology has already been used, but only for the case of negligible effects of polarization and magnetization;
here this restriction is removed and the general case tn cated. The entropy pr1nc1ple and the principle of material frame
indifference are imposed; by using the methods of Extended Thennodynamlcs we can see that they give very strong:

restrictions on the Consututwe functions appeann g in these balance laws

1 Entroductlon.

In ordinary Thermodynanncs the conservatlon }aws of mass (with denszty ", momentum (with den51ty F}) and energy
(with den51ty F;) are used as field equations; in these equations, also the momentum flux density F;; and the energy
flux density 1 2 qu occur, and they are linked to the independent variables F, Fj, 5 1 ¥}, and to their gradients through the
state equations and the Navier-Stokes and Fourier laws, But in this way parabolic equations are obtained which yield
_ infinite speeds of shocks propagation. In extended thermodynamics (see [1] and subsequent papers sumumarized in [2])
the aim has been realized to obtain an iperbolic set of field equations (and symmetric {00} in the following way

e Consider as independent variables F', Fj, Fy;, Fyy (in other words, also the above fluxes have been inchuded); for
this increased number of independent variables, consider also a corresponding increased number of field equations.
e Link the new fluxes, which appear in these equations, only to the indepéndent variables and not to their gradients.
Restrict the generality of these links, or constitutive equatlons by i 1rnposmg the pnnaple of entropy and that of

Galilean 1 mvanance

In this way a symmetric hyperbolic set of field equanons are obta.lned consequently yleh:hno finite speeds of shocks
propagation and continuous dependence on the initial conditions; therefore, they are more physically significant than -
those of ordinary Thermodynamics. This last one can also be rccovered from those of Extended Thermodynanncs as
first approximation of a particular iterative procedure. : ' . - : :
However, in [1], the flux appearing in a ficld equation is the mdependent Vanable of the subsequent equatlon it follows
that the original model describes only mono-atomic gases: We have. verified that, also from the mathematical point of -
view, this structure leads to results which are too much restrictive for polarizable and magnetlzable fluids; for example
also at equilibrium we obtain po]anzatlon effects without magnetization, which fact is physically unacceptable. This
shows that the theory knows how polarization and magnetization cannot occur in mono-atomic gases! The reason is "
that in this case the model doesn’t take inio account the interactions between atoins and molecules. -
~Tn [3] it is shown how, also in Extended Thermodynamics, field equations can be considered which overcomne this
problem, and the fluxes are called F, Gik, Giji, Gikir (the first of these is still the momentum density, obviously);
however, in [3] such constitutive functions have not been found by imposing the principles of entropy and that of
Galilean invariance. This result has been recently achieved by some of us in [4] Wlth a method akm to that of the -
kinetic theory, so that it has been called “A kinetic type extended model .. '
Here we want furtherly improve the model so that it may well describe aIso polaﬂzable and magneuzable fluids. To
this end we have in literature only models in the framework of ordinary Thermodynamics, such us [5]; here we want to
obtain a model in the framework of Extended Thermodynamics, because it Jeads to more physically significant results
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as seen above. We consider the following extended set of field equations. The first four of these have been found by
applying the general guidelines of ref. [3]; note the contribution of the Lorentz force irt the right-hand sides, and that
~ of aterm (in third and fourth equation) which takes into account external supplies other than body forces, according to
" the note on page 129 of &f. [3]. The egs. (1)1,2; (2), (3) and the trace of eq. (1)s are those studied by Liu and Miiller .
[5] in the non extended approach. _ S L R i o
The subsequent four equations are the Maxwell equations with electric field [; and density of magnetic flux B;, while
the Tast two are definitions of the current J; and of the charge density ¢ in terms of the Polarization P, Magnetization

M;, the free current ¥ and the free charge density g* . _ _
. ) &k 0 Fr = 0 ,  OdF; -+ Gip = gEz + €igpdgBp 5 ' ' : (1)
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where vy == %’ﬁis the velocity, Elj,jk.is the Levi-Civita symbol, 1o thé vacuum permeability, €o the dielectric constant, _
- The conservation of charge 8:(g — ¢ ) + Fx(Jk — JI') = 0is a consequence of (3). We note that another possible -
approach is to consider (3) not as field equations, but as definitions of J; and g; the remaining eqs. (1), (2) are still a
system of first order partial differential equations, ever if the time and space derivatives occur also in the right-hand
~ sides, through J; and ¢. But in this way the divergencé form is lost; for this reason we have chosen a different approach.
We siress, once again, that in this set of equations the independent variables are F', Fi, Fij, Fiy, B, E; and FPy; but
~ also the quantities G, Gk, Gikits Peijs, Pur, M, JI = J?;F — qF v, occur in this system, so that they are unknown
quantities for wh_ich closuse relations are needed. The main result of this work are the expressions of these constitutive
functions. They can be found by eliminating the parameters A, s, Nij, Aitis Pis €, 1 between the subsequent eqs. 6),
(7)2—4, (8)s which are expressed in terms of the fanctions A’ and ¢, whose expressions are reporfed in the subsequent
eqs. (16) and (17). o S SR P .
The arguments which allows us o find them are usual in Extended Thermodynamics, i.e., 10 impose that every solution
of our system (1), (2), (3) satisfies a supplementary conservation law 8:h+ Ordr = ¢ > 0. This amounts in assuming
the existence of Lagrange multipliers X,-As, Xigs Adils By €5 T b, €, 7 such that ' B S
dh = )\dF+ )\1sz +. }\i_deij + )\igé'dFi” =+ ,Biqu, + En;dE?;(é,LLDEU)' + TfidP-i , o
dos = MFs + XdGix + AijdGigic + daudGap + Bieingd B+ BENCON
: SO deeagdBy  md(ens My + 2P0g) + bdBy, + eeodEy + wdPys o
~ besides a residual inequality which we.leave out for the sake of brevity. = R B
By taking A, Ais Aij, Aty By €is i8S independent variables, and by defining

RoR
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The eq. (8)4 is the symmetric part of (8)3, after that (8)s remains simply the definition of magnetizanon M;. We note

' that, by dropping egs. (6)5,6,7, {8) and calculating the Iemammg onesinf; =0,6; =0,7m=0,b=0,e=0,7 =0,

we obtain an important subsystem, i.e., the equatxon of the extended approach to dense gases and macromolecular -

' fluids. These have been studied in [4] and we can use here the results. Similarly, by dr0ppmg eqs, (6)1-4,7, (7), (8)3,4

and calculating the remaining ones in A = 0, A = 0; A5 = 0, Ayyg = 0, m'= 0, 7; = 0, we obtain the Maxwell
equations. In the next section we will exploit their Imphcatlons to eqs (6) (7) and (8). At last, in section 3, we will

“consider the general case,

A suppiementary conservatmn law for Maxwell equatmns

We have to consider the eq. (6}5;5 and (8)1,2 with 77 =0 i _1.e.

. o’ o
C o Bi=gg meeBi= G,
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clearly, here we haven’ t to impose the Galilean invariance principle, with decomposition in velocity dependent and
independent parts; in fact, the velocity doesn’t occur in this equations. For this reason we have assumed a supplementary

* conservation law and not an entropy principle. From the representation theorems [6], [7} and [8] we know that ¢, =

1€k + @20+ w3t fres With w1, 02, @3, h',band e functions of G5 = €65, Gaz = €35, Gaz = F: ;. After that

" the symmetric parts with respect to i and k of (9)3 4 gwe 2 linear combinations of €; €, €0y, Bilri bk, €(i€ryrs €35

and Jiexyrs€rGs which must be zero; by setting equal to zero the coefficients of the last 2 of the above tensors, we -
find that i3 is a constant. The skew-symmetric parts, with respect to 4 and &, of egs. (9)3,4 are linear’ combmations of
E[?ﬂk] 61LJ €4, ezkj ,6‘_7 ; putting equal to zero the coefficients of these last 2 tensors, we find. -

O oo '  an’ _{O_ oK 1
9Gn 2 7Y 9Gn o Tm 270 T

' 1
A= 2903((?22 + poeoG11) + const = 5303([3 B + #omezet) + const -

After that, what remains of eq. (9)3 shows that

o lt) _0 3{,01 __O'.agm 0. 02 _o,

= = =0, —b
6’G12 ? _BGQQ ! 8@12. . h 8@22 . vz = - (’03
and what remains of (11)4 gwes 52%1—1— = __O, 65121 =0 @1 = 61.5[3903.; o
mn other Words €, b, w1, 2 and (o3 are constant and c,o; = €cop3, P2 = -bcpg._

3 The case ‘with polarization and magnetlzatlon_

- Consider now the genéral case, the problem of finding the functions

h A, Ai,)\{,j,)\i”,ﬁ{,ﬁ{,,?’ri and qﬁf;c Ay Ad, Aig, Aaw, Gi, €5, 7)) satisfying
¥]

eqs. (6, (7) and (8). We have already determined, in ref. [4] , their expressions in 8; = 0, ¢; = 0, m; = 0. Let us
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define now the functions Ah' and Ag}, from

B (0 M, Adgy Matty Ber €6,5) = B (A, Ay Aig Aty 0, 0,0) + AW 1oy
Qbk()\ A'L:AZ_?})\‘L”,,BL)E'E)W%) - (.ﬁk(}‘ )\%:)\ZJ’)‘HHO 0 G) - A¢k7 : :

and note that they become zero when calculated in B =0,¢ = 0,m = Q. ‘Substitute eqs (10) in the concilttom
emervmg from (6), (7) and (8), i.e., (7)1, {8)1,2,4 thus obtaining _
BAY,  BAW QAR e BPAR.  BPAW

= —b = — -
oy~ ox  Coxagk T o 0r0e  odme’ -y

ey OAN _0A¢ AW e AN | BPAW
—poen O¢; . 08 0B:i0Bk - o 8ﬁta€h. - 0fi0my

AR aAqsk L BPAW e PAN.  BPAW

COMTEE T 0 0B ‘_Eaeiaek'-f Beidmy. '
- _BA, _b-azm’ e BAK '+ H2AR
o 87#T1 6‘7(18,8;6) ,LLO aﬂ(taek) C{)’rzaﬂ'k -_

- When conSIdenng only the Maxwell equatlons we have obtamed that b and ¢ are constants thls suggests to restrict
ourselves, also in this general case, to the solunons w1th b,eand 7w not dependmg oL A, Bz, ez, iy, for the sake of

| - AR ¢ OAK . DAN
. . - v . . i __ b
_ .31.mphc_1:ty By deﬁmng ¢k Af,é;c-!- 50, o Ocx + e

(12)

SAK ad;g ey OAR B
N T 8)\ T Ho€o 863 _8ﬁ1 .’_
EAk_B/_\.h’ _ A O
Yag; . O’ By

- a3

 the eqs: (11) become

The symmetric parts with respect to 4 and % of (13)24 show (with the same proof which deduces a rigid motion if the
deformatmn tensor is zero) that ¢ is linear both in ¢; thatin' /3; and in m; ,i.¢., :

@5;: = ¢kabr:ﬁa5bﬂ’c + ﬁbkabﬁafb + Qshab"rafb -+ ﬁbkab“aﬁb‘i' . . (14)
+ ‘i’kaea + ¢Aa)6a + qskaﬁa + ¢A 7 -

- where ¢rasbe, qﬁmb, &t gbk doesn’t depend on ﬁi, €; and 7r;; moreover, SUH the symmetrlc parts of (13) —4 show that

. Prabes Prnys P, change sign when we exchange the index k& with whatever of the other indices. But we can ‘exchange

whatever couple of indices trough 3 changes of indices involving the first one; it follows that Prabe, Dot Pl are
skew- symmetﬁc tensors for every couple of indices. But in ¢rapc at least one of the indices 1 2 3 occurs 2 times;
therefore, we have ¢rape = 0. Moreover, ¢t ., is not zero only when k a bis 12 3 or anyone of its permutatlons
therefore, it is proportional t0 €xap. In other words the scalars " (X, )\T, )\m, )\m) and the vectors vy ()\ Ary /\Ts, m) :
exist, such that : R .

: ¢kab = @' erab; fﬁka'w €Fcab'ub B - o g (15

_These partlal results 31mp11fy very much the explmtatmn of condmons (13) although the passages remain long and
tedious, so that we report simply the final results, i.e., the expressions for the functions AW and Aqﬁk, they are the
first three rows of the following eq. (16) and the first ﬁve rows of the eq. (17), respecnvely The remaining rows are
the expressions of A’ (X, Az, Aij, Aait, 0, 0,0) and BN Ay Aig, At 0,0, 0) found in ref. [4] (up to second ordel in the
variables )\1, )\<23>, Ainn)s thc1r sum, accordmg to eq. (10}, glves the functlons I and qbk, ie., : . :

. hl = 290 (#OEOEJEJ +ﬁjﬁ3) - UEU(P EJWJ +‘10 5:17"3 +€-;~3b/\ GJU?J + R (16)

+emb}\ 6;,1)5 —i—poegej(vj +Uj A) - ﬂj(v | _.3 )+ :
_8}\

8
27 35
9 - 35GH(>\) . 050’()\)/\57 2/\<ij>)\'<i5‘>_+_

1 -
EG(A)/\H 2 N

+ eka.b/\k:ﬂ'a + e I (‘)\ Aza, Azlly 72'.'\,) +

e, (A)ﬁ'/ 2 G A 2,\*,\1” +
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qﬁk = (ekabﬁaeb — b8k + ecoer) + (E.fcab'ﬂ'aeb — by — Wﬁﬂ) (17}
ot (Ekab’fraﬁb - EEoﬁk + EO#OWER) + ’Ub €kabta -_1— Ua Ekabﬁa
405 (enanBa + ephk — 5kb€r)\r) + '

- 1 .
+’U§1 (Ekabea)\ - ﬁb)\k—_ + SrbfFr Ar - ) + -
. Epfio €0 fip .

[ 0H,
Tr

o + Hy = (HF')‘JTT_O] + Ekab'ﬂ-a[ﬁbl “|"Ug;,0] +

7 35G ()\)}\_5/2)\;; + [——G()\}X—7 2 4 f1(}\u)] )\ku +

e -3/2+'f2(/\u)] Nk drtt 105@@\»”” 2)\<:m~>)\

11

Here w0t vpt, vgi., vp?, v?e are func'tiohs of - Aras Arits .
 bye, U S are functions of T A Ars s Antn
. vfo ' © . isfunction of A Arss Al :
H. oo dsfenctionof Ay Aps, Apu, W5 7

- 'G()\) is functlon of X, fi{a) and fo(Xi) are functlons of )\.u, :
o they are arbltrary furctions restricted only by .
82'Ub0 -
8}\2

_Dand W(Hk) ' (bv;C Jree()wv ))\+TH;C()\M,)\?,“) | .;_ B (18)

‘rr,-_-O .

: Wlth H; a.nother arbltrary function of its vanables o .

The first terms of eq.-(16) and the first one of eq (17) are the same Of the corr espondm g ones in sect 2, forthe Maxweli
equatlons The only difference is that kere »° may depend on Az, A, while in sect 2 1t was a constant. Itis easy to
verify that, in this way, eqgs. (11) are satisfied. - :

The expressions {16) and (17) can now be inserted inegs. (6), (7)2—4. (8)3 and give I7, Iy, Fi;, Fiuu, Bi, Bi, Pi, G,
Gijks Giku, M; as functions of the parameters A, A, Aij, Aaut, i, €, 7. The first ones of these functions can be used
to obtain the parameters as functions of I, Fy, Iy, Fau, By, By, Py by inserting these in the remaining ones, we obtain
the constitutive functions G, Gijk, Gk, M as functions of the independent variables I, F;, Fyy, I, By, By, B
- In this way the requested closure has been obtained. We apologize because we cannot report these passages in the only
% pages allowed for these proceedings; the interested reader may do them by himself, because they are straightforward,
or may ask us to send them privately. The same thing we have to say for the other constitutive fanctions Py, Fun,

'J*—JF—q V.

Conclusions . : : :
'We retain the results of the present paper very satisfactory, because they allow to study also polanzable and maonen—
- zable fluids in the framework of the well established theory of Extended Thermodynamics. The field equations to be
* solved are (1), (2) and (3) closed in the above mentioned way; although apparently complicate they can be put in the
symmetric hyperbolic form by simply changing the independent variables, so predicting finite speeds of wave prop-
‘agations, There remains to understand the physical meaning of the arbitrary functions still remaining in our closure.
Some of them depend upon the particular fluid treated, and aré related to the state funcuons and the others’? are Zefo,
' perhaps'? This WIH be argument of further 1nvest1gat10n B : : :
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