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A KINETIC TYPE EXTENDED MODEL FOR DENSE
GASES AND MACROMOLECULAR F LUIDS

M. C. CARRISI - F. DEMONTIS - A, SCANU

Extended thermodynamics is an mportant theory which is appreciated
from mathematicians and physicists. Following its ideas and considering the
macroscopic approach with suggestions from the kinetic one, we find in this
paper, the solution of an interesting model: the model for dense gases and
macromolecular fuids.

1. Introduction.

As usual in extended thermodynamics {1], we adopt a model which takes,
as independent variables, the mass density F, momentam density F;, momentum
flux density Fi; and the energy flux density %F,-”. For their determination, the
following field equations have to be considered

afF + achk =0,

O F +8Gy =0,

0 Fij + 3Gy = Poije,
0 Fit + 8, Gy = Py,

ey

J
the production terms. In ideal gases, we have also the conditions G;; == Fy,

with F}j = ]":,',', Gijk = G, P<,'J‘> = P<J‘[>, and this last tensor, with P are
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Gy = Fyp; and for this particular case an elegant solution of the entropy
and objectivity conditions have been found by T. Ruggeri and G. Boillat and
is known as the “kinetic approach” to these conditions. But this case isn’t
applicable to all materials; so we have chosen here the less restrictive model.
In any case, we accept suggestions from the kinetic approach also for our less
restrictive case and for this reason we call the present one as of “kinetic type™.
On the other hand, we aim to produce a model which may constitute the ”ground
zero” upon which to built other significant phiysical applications. To this end,
simplicity will be pursued. A first application of these results has already been
used in a model for magnetizable and polarizable fluids (see [2]).

Coming to the point, we want that our system (1) be a symmetric hyper-
bolic system, with all the consequent nice mathematical properties. To this end
we impose now that every solution of egs. (1) satisfies a supplementary conser-
vation law 3,1 + 8,¢p = o = 0. This amounts in assuming the existence of
Lagrange multipliers A, A;, A;;, A;y such that

2 dh =  AF + MdF; + 0 dFY 4 dyyd F,
doy = MF +3dGiy + Aijd G + hindGun,

besides a residual inequality which we leave out for the sake of brevity.
By taking A, A;, A;;, Ay as independent variables, and defining

h =  AF+MF 40 FY 4+ 2 FY — b,

3 -
_( ) ¢ = M+ MG+ 0 Gk + Ain G — &,

the €qgs.(2) become

4) F = % Fi= Eﬁ_, Fii = ﬂ L ﬂ,
ar dh; ) BAU dAin
age ok Iy A Iy
5 = = Gy, Gip=—, Gup=—".
© G T G TET Ay M B

These are the equations of the extended approach to dense gases and macro-
molecular fluid. In the next section we will see also the implications of the
indifference frame principle. Finally, in the section 3 all these conditions will
be exploited and solved.
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2. Implications arising from the galilean relativity principle..

We report now briefly how this principle is {ﬁlﬁosé:d in literature (see [1],
[4] for example), in order to investigate its consequences in the subsequent con-
siderations. Fizstly, the following changé of independent variables is considered

©6) F = m F=my, FI;=mnyy -i—m;j,
Fa = mig -+ mygv; + 2m v+ Moty

and of constitutive functions

Gik = mu; U + Mi)'(e
(7 Gijp = Fijoe + 2va My + My,
Gune = Eypug + v My A 2v0 My + v Mg + 20 My + M.

The galilean relativity principle imposes that &, ¢ — hvg, Mig, Miji. Muw, M;
don’t depend on v;. Imposing this condition for /2 and ¢, — hv, we obtain

0 =Fiy+20iaF; + M (Fubin + 2F,),
(8) 0 =Fhy + 224Gk + Ain(Guibie + 2Giar) +
F+OF -+ i Fy + A By + Mg Fip — h)6ga;

where egs (2) have been used. The independence of My, Mz, Muy. M; on v;
follows as consequence. In fact, egs. (2} now become

dh = \dm + kl‘-;-dmij + Alydma

©) ! i /
dgy — hv) = h; d My + hj;d Miji + dipd My

with

Ao+ A 4 Ajuiyy + )Lmv,-vz,

)\.f = A; + 20,0, + )umvz + 2A i ¥a Vs,

My = hij 4 harvadi; + 2o vp,

Miy = Mt
From eq. (9); we see that A{, k;’j, AL, don’t depend on v; (because 4= = A’ but
h and m don’t depend on v;, similarly for k;’j, 1Ly buteq. (8); can be written
also as

(10) 0 = mrl + Al (mudie + 2mig),
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so that also A/ doesn’t depend on v;. By defining &’ and ¢y from
!

h = Am 4+ Afjm,-j + )\.{I;mm —h ,,

¢ —hve = M Mg+ M Mije + MM — G

the egs. (9) become
A = md! +mijdl§j -|-mi“dkfu

I
dg, = Mud\ + Mipdf; + Mid iy

from which by taking A', Al 24 as independent variables, it follows

7 !
(11) m = 8}\‘” if fJ alm
I
' ! f arl ad, M g
%_M”?&r_, %=Mrk—j_+Mijk’ m—-—Mrk—-——aM“-l- itk
gl EEmD a9y L ,

Moreover. the sum of €q. (8)1, pre—multiplied by —¥, and of eg. (8)2 becomes

0= 27\{0M,'k -+ }Lf”(MlIkéia + 2Miai) + h ks

(12)
or, by using (11)4,6-
0= {2}..,_ = Mg T =M AT F
(13) 43 ahq a}\'m
o, ;0
I Tk e 4 20 + h'épu-
+ )\'&H alfj 81", + il alfa o

doesn’t depend on v;; let us prove this by

i ion we see that My - Lod
From this relat ct to the state with A’;a = §Azi‘smv ’

iterati der respe

the iterative procedure on the or .

W =0, , = 0. Equation (13} at the order N gives
*a

<rd>

N 4 —n I = 2T

é')\{,!(Mak) + ;}(Mrk) {Z}Lra all 31}3 i i ax{u
; i e the

as a function of quantities not depending on v;. (here—( ; ¥ deg;);as he
expression of (- ) at the order g). For example,_ for N =0, \; i
MO doesn’t depend on vi} by assuming, via the iterative proce urei\r =
(ﬂflk ¥4 satisfies this property forg < N—1, it follows that also ,(Mak) Zatls j.s
it j’ifter that, (11)6.7,5 show that also ijk‘, Mmk and M; d(?n t dlzps? aol?lea,_[;
Ir; this way we have proved that entropy principle and the princip g
relativity amoant simply to conditions (112, (30) and (12).

In the next section the equations (1 0)-(12) will be solved.
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3. Exploitation of the entropy principle and of galilean relativity..

In order to solve the conditions (10)-(12), let us firstly consider another

mathematical problem: we look for two functions A*(A', Af, A/, A[;} and
pr (0, AL, Afj, A1) that satisfy the sequents
(14) an* on* on*
m = 5, My =T, Miy= 7
2! 92.]; B2y
d; _ BhT By 3o Ay
(15) = —, —7 =My, =My 7 =Mu.
artaalt aa! B2 ariy,
6 0 = WAl + 2%# + M G Brsia + 2357),
ag: iy 24 2g; s -
0 = Al +200a], + AL (G 8rsbia + 2500) + S

After that, we consider A/ implicitly defined by the equation 0 = 25 Well,
h* and ¢} calculated in this value of A! are exactly the functions /' and
¢, (respectively) satisfying the eqs. (10)-(12Z). So let us begin with the
mathematical problem (14)-(16).

3.1 Resolution of conditions (15); and {16).
We look for a solution, of the conditions (15);-(16), of the type

an R =h" ¢ =@ +on AL AL A,

where 1 and qbf are the expressions of #* and ¢ in the case of the macroscopic
approach with the further conditions Gy = Fy, Gy = Fiy. They can be
found in ref. [5]; more restrictive results can be obtained in the following way.
Consider the kinetic approach with 14 moments, i.e.,

Iinn

he = f FO+ 1+ Mficies + higeic® + My e®) de.
(18)

where ¢; are the integration variables in the phase-space and f is related to the
distribution function. After that, one can consider the expansions of A% and ¢f
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around thermodynamical equilibrium and adopt the results for the macroscopic
approach to the model with 14 moments. Consider, finally, the subsistem (see
ref. [1]) of this one obtained simply by putting A}, = 0 and recover, in this way
the macroscopic approach with 13 moments. Also for this reason we call (17)
with ¢g, 5 0 a “kinetic type” solution. In other words, the kinetic approach is
here used only as a mathematical tool to obtain a particularty simple solution of
the macroscopic approach; starting from it, a more significative solution will be
found in the next passages. Obviously, the kinetic approach with 13 moments
hasn’t been used, to avoid integrability problems.

It is easy to see (17) satisfy (15); V¢, , due to the fact that ¥ ¢, doesn’t
depend on A/,

In this way all relations are certainly satisfied if qu,\ = (), so that for the
general case it remains to impose that egs. (17) satisfy the conditions (16), i.c.,

qb(}."g 7 8¢§k ¢Gk {
19 0 = Mo+ (2 8rs8ia )1
(o) a)J at kAl o

let us impose this with an expansmn with respect to the state s where A] = 0,
AL =0,2], =0. The symbol @4 denotes the expression of ¢, of order N
with respect to this state. 0bv10usly, we have quk = () because at the order 0,
¢y may depend only on A},. We shall see that, by imposing eq. (19) at order N,
we find «;zSN * except for terms not depending on A which, on the other hand,
can be also found with the representation theorems [6], [7]. In fact, eq. (19) at
the order zero gives
2 00

0= 3% arl

from which ¢} doesn’t depend on A1, But we have already seen that P =0
so that up to the order 1, we have that ¢g, 1s given by

(20) dor = FGIAML,

with f) arbitrary function. Eq. (19) at the order 1 is

2., 3¢5 dog; gy 3r
0= -3_A’.{i 8l‘r +2)‘I<m> B}L’ +( 8}\.1 2182> BA'Ok 8ia A-{}[

<F§> "

from which

3y Pix = LODA A,
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with f; arbitrary function. Eq. (19) at the order 2 is

dggr ' d¢
0 . }\‘[ ¢ + 2)\'1’ ¢01\ + (2 CbOI\ 61’{[&;} + S 0k Sia))";r,'[

== 3 il 8)\.1 : <ias 8}\-;’ &}“i;_g> i ;’l
from which
N 1
(22) 3117:— FO) TOL MDA - E(fz 15 FD )T QLA ) Ay +

=+ |if3()L (3-,.11 1;) + f4(}\”)(l‘7’(k<”>) )jl)h,u{ + fs( )(A'<kr>)2 Anrs

with f3, fi, fs arbitrary function. Eq. (19) at the order 3 gives

(23) @i = — fs(i Y AL Mg Al +
+ E[fi IO = @fa+ 50007 ] Gl d g
+ §<xf,)—2(3fa. FAOL A M+

+= (fs—15f2)(k”) MM b

-+ terms not depending on A,

and so on.
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