A KINETIC TYPE EXTENDED MODEL FOR DENSE GASES AND MACROMOLECULAR FLUIDS

M. C. CARRISI - F. DEMONTIS - A. SCANU

Extended thermodynamics is an important theory which is appreciated from mathematicians and physicists. Following its ideas and considering the macroscopic approach with suggestions from the kinetic one, we find in this paper, the solution of an interesting model: the model for dense gases and macromolecular fluids.

1. Introduction.

As usual in extended thermodynamics [1], we adopt a model which takes, as independent variables, the mass density ρ, momentum density F_i, momentum flux density F_{ij} and the energy flux density $\frac{1}{2}F_{ii}$. For their determination, the following field equations have to be considered

\[
\begin{align*}
\partial_t F_i + \partial_k F_{ik} &= 0, \\
\partial_t F_{ij} + \partial_k G_{ijk} &= 0, \\
\partial_t F_{ijk} + \partial_k G_{ijkl} &= P_{<ij>}, \\
\partial_t F_{iil} + \partial_k G_{iikl} &= P_{<ii>},
\end{align*}
\]

(1)

with $F_{ij} = F_{ji}$, $G_{ijk} = G_{jik}$, $P_{<ij>} = P_{<ji>}$, and this last tensor, with $P_{<ii>}$ are the production terms. In ideal gases, we have also the conditions $G_{ik} = F_{ik}$.
$G_{III} = F_{III}$; and for this particular case an elegant solution of the entropy and objectivity conditions have been found by T. Ruggeri and G. Boillat and is known as the “kinetic approach” to these conditions. But this case isn’t applicable to all materials; so we have chosen here the less restrictive model. In any case, we accept suggestions from the kinetic approach also for our less restrictive case and for this reason we call the present one as of “kinetic type”.

On the other hand, we aim to produce a model which may constitute the “ground zero” upon which to built other significant physical applications. To this end, simplicity will be pursued. A first application of these results has already been used in a model for magnetizable and polarizable fluids (see [2]).

Coming to the point, we want that our system (1) be a symmetric hyperbolic system, with all the consequent nice mathematical properties. To this end we impose now that every solution of eqs. (1) satisfies a supplementary conservation law $\delta h + \delta \phi_k = \sigma \geq 0$. This amounts in assuming the existence of Lagrange multipliers $\lambda, \lambda_i, \lambda_{ij}, \lambda_{III}$ such that

$$
\frac{dh}{\delta \lambda} = \frac{\lambda_i dF = \lambda_{ij} dF^{ij} + \lambda_{III} dF^{III}}{\delta \phi_k} = \lambda_i dF = \lambda_{ij} dG_{ik} = \lambda_{ij} dG_{ijk} + \lambda_{III} dG_{IIIk},
$$

besides a residual inequality which we leave out for the sake of brevity.

By taking $\lambda, \lambda_i, \lambda_{ij}, \lambda_{III}$ as independent variables, and defining

$$
\frac{\tilde{h}}{\delta \lambda} = \lambda F + \lambda_i F^{ij} + \lambda_{ij} F^{III} - h,
$$

$$
\frac{\tilde{\phi}_k}{\delta \lambda} = \lambda_i F_k + \lambda_{ij} G_{ik} + \lambda_{ijk} G_{ijk} + \lambda_{III} G_{IIIk} - \phi_k,
$$

the eqs. (2) become

$$
\frac{\partial h}{\partial \lambda} = \frac{\partial \tilde{h}}{\partial \lambda}, \quad F^{ij} = \frac{\partial \tilde{h}}{\partial \lambda_{ij}}, \quad F^{III} = \frac{\partial \tilde{h}}{\partial \lambda_{III}},
$$

$$
\frac{\partial \phi_k}{\partial \lambda} = \frac{\partial \tilde{\phi}_k}{\partial \lambda}, \quad G_{ik} = \frac{\partial \tilde{\phi}_k}{\partial \lambda_i}, \quad G_{ijk} = \frac{\partial \tilde{\phi}_k}{\partial \lambda_{ij}}, \quad G_{IIIk} = \frac{\partial \tilde{\phi}_k}{\partial \lambda_{III}}.
$$

These are the equations of the extended approach to dense gases and macromolecular fluid. In the next section we will see also the implications of the indifference frame principle. Finally, in the section 3 all these conditions will be exploited and solved.

2. Implications arising from the galilean relativity principle.

We report now briefly how this principle is imposed in literature (see [1], [4] for example), in order to investigate its consequences in the subsequent considerations. Firstly, the following change of independent variables is considered

$$
F = m F = m v_i, \quad F^{ij} = m v_i v_j + m_{ij},
$$

$$
F^{III} = m_{III} + m_{ij} v_i + 2 m_{ij} v_i + m v^2 v_i
$$

and of constitutive functions

$$
G_{III} = m v_i v_k + M_{III},
$$

$$
G^{ij} = F^{ij} + 2 v_i M_{ijk} + M_{ijk},
$$

$$
G^{III} = F^{III} + v^2 M_{III} + 2 v_i M_{III} + v_j M_{III} + 2 v_i M_{III} + 2 v_i M_{III} + 2 v_i M_{III} + 2 v_i M_{III}.
$$

The galilean relativity principle imposes that $h, \phi_k - h v_k, M_{II}, M_{III}$, M_{III}, M_{I} don’t depend on v_i. Imposing this condition for h and $\phi_k - h v_k$ we obtain

$$
0 = F^{I} + 2 \lambda_{I} F_{I} + \lambda_{III} (F_{III} \delta_{I} + 2 F_{III}),
$$

$$
0 = F_{I} + 2 \lambda_{II} G_{I} + \lambda_{III} (G_{III} \delta_{I} + 2 G_{III}) + (\lambda F + \lambda_i F_{I} + \lambda_{ij} F_{II} + \lambda_{III} F_{III} - h) \delta_{I} + \delta_{I},
$$

where eqs (2) have been used. The independence of $M_{III}, M_{III}, M_{III}, M_{III}$ on v_i follows as consequence. In fact, eqs. (2) now become

$$
\frac{dh}{\partial \lambda} = \lambda \frac{dm + \lambda_{I} dm_{II} + \lambda_{III} dm_{III}}{\partial \phi_k} = \lambda \frac{dm + \lambda_{I} dm_{II} + \lambda_{III} dm_{III}}{\partial \phi_k},
$$

$$
\frac{d(\phi_k - h v_k)}{\partial \lambda} = \lambda \frac{dM_{III} + \lambda_{I} dM_{III} + \lambda_{III} dM_{III}}{\partial \phi_k},
$$

with

$$
\lambda \lambda = \lambda + \lambda_{I} v_i + \lambda_{II} v_i v_j + \lambda_{III} v_i^2,
$$

$$
\lambda_{I} = \lambda + 2 \lambda_{II} v_i + \lambda_{III} v_i^2 + 2 \lambda_{III} v_i v_i,
$$

$$
\lambda_{II} = \lambda + \lambda_{I} v_i + 2 \lambda_{III} v_i + 2 \lambda_{III} v_i v_i
$$

From eq. (9) we see that $\lambda^{I}, \lambda_{I}^{II}, \lambda_{II}^{III}$ don’t depend on v_i (because $\frac{\partial \lambda}{\partial \lambda} = \lambda^{I}$ but h and m don’t depend on v_i, similarly for $\lambda_{I}, \lambda_{I}^{II}, \lambda_{I}^{III}$, but eq. (8) can be written also as

$$
0 = m \lambda_{I} + \lambda_{III} (m_{III} \delta_{I} + 2 m_{III}).
$$
3. Exploitation of the entropy principle and of galilean relativity.

In order to solve the conditions (10)-(12), let us firstly consider another mathematical problem: we look for two functions \(h^*(\lambda^l, \lambda^i, \lambda^j, \lambda^k) \) and \(\phi^*_k(\lambda^l, \lambda^i, \lambda^j, \lambda^k) \) that satisfy the sequents

\[
\begin{align*}
\frac{\partial h^*}{\partial \lambda^l} &= m, \quad m_{ij} = \frac{\partial h^*}{\partial \lambda^i}, \quad m_{iij} = \frac{\partial h^*}{\partial \lambda^j}, \\
\frac{\partial \phi^*_k}{\partial \lambda^l} &= M_{ik}, \quad \frac{\partial \phi^*_k}{\partial \lambda^i} = M_{ik}, \quad \frac{\partial \phi^*_k}{\partial \lambda^j} = M_{ik}, \quad \frac{\partial \phi^*_k}{\partial \lambda^k} = M_{ik}.
\end{align*}
\]

Moreover, the sum of eq. (8)_1, pre-multiplied by \(-v_k\), and of eq. (8)_2 becomes

\[
0 = 2\lambda^l_{ia} M_{ik} + \lambda^l_{iij}(M_{ik} \delta_{ia} + 2M_{ak}) + h^* \delta_{ia},
\]

or, by using (11)_4,6,

\[
0 = 2\lambda^l_{ia} M_{ik} + \lambda^l_{iij}(M_{ik} \delta_{ia} + 2M_{ak}) + h^* \delta_{ia},
\]

or, by using (11)_4,6,

\[
0 = 2\lambda^l_{ia} - \lambda^l_{iij} \frac{\partial \lambda^l_{iij}}{\partial \lambda^l_{iij}} \delta_{ia} - 2\lambda^l_{iij} \frac{\partial \lambda^l_{iij}}{\partial \lambda^l_{iij}} \delta_{ia} + h^* \delta_{ia}.
\]

From this relation we see that \(M_{ik} \) doesn't depend on \(v_k \); let us prove this by the iterative procedure on the order respect to the state with \(\lambda^l_{ia} = \frac{1}{2} \lambda^l_{iij} \),

\[
\lambda^l_{iia} = 0, \lambda^l_{iij} = 0.
\]

Equation (13) at the order \(N \) gives

\[
2\lambda^l_{ia} (M_{ak})^N + \sum_{q=0}^{N-1} (M_{ak})^q \left[2\lambda^l_{ia} - \lambda^l_{iij} \frac{\partial \lambda^l_{iij}}{\partial \lambda^l_{iij}} \delta_{ia} - 2\lambda^l_{iij} \frac{\partial \lambda^l_{iij}}{\partial \lambda^l_{iij}} \delta_{ia} \right] = 0.
\]

as a function of quantities not depending on \(v_k \). (Here \((\cdots)^q\) denotes the expression of \((\cdots)\) at the order \(q \). For example, for \(N = 0 \), we obtain that \(M_{ak}^0 \) doesn't depend on \(v_k \); by assuming, via the iterative procedure, that also \((M_{ak})^0\) satisfies this property for \(q \leq N - 1 \), it follows that also \((M_{ak})^N\) satisfies it. After that, (11)_6,7,8 show that also \(M_{ijk}, M_{ikk} \) and \(M_{i} \) don't depend on \(v_k \). In this way we have proved that entropy principle and the principle of galilean relativity amount simply to conditions (11)_4, (10) and (12).

In the next section the equations (10)-(12) will be solved.
around thermodynamical equilibrium and adopt the results for the macroscopic approach to the model with 14 moments. Consider, finally, the subsystem (see ref. [1]) of this one obtained simply by putting \(\lambda_i^{\text{fin}} = 0 \) and recover, in this way the macroscopic approach with 13 moments. Also for this reason we call (17) with \(\phi_{Ok} \neq 0 \) a "kinetic type" solution. In other words, the kinetic approach is here used only as a mathematical tool to obtain a particularly simple solution of the macroscopic approach; starting from it, a more significative solution will be found in the next passages. Obviously, the kinetic approach with 13 moments hasn’t been used, to avoid integrability problems.

It is easy to see (17) satisfy (15) \(\forall \phi_{Ok} \), due to the fact that \(\forall \phi_{Ok} \) doesn’t depend on \(\lambda_i \).

In this way all relations are certainly satisfied if \(\phi_{Ok} = 0 \), so that for the general case it remains to impose that eqs. (17) satisfy the conditions (16) i.e.,

\[
0 = 2 \frac{\partial \phi_{Ok}^s}{\partial \lambda_i} \lambda_i + \left(\frac{\partial \phi_{Ok}^s}{\partial \lambda_{i<\alpha>}^{\lambda_i}} + \frac{\partial \phi_{Ok}^s}{\partial \lambda_{i<\alpha>}^{\lambda_i}} \psi_i \right) \lambda_i^{\lambda_i} ;
\]

let us impose this with an expansion with respect to the state \(s \) where \(\lambda_i = 0, \lambda_{i<\alpha>} = 0, \lambda_i^{\lambda_i} = 0 \). The symbol \(\phi_{Ok}^s \) denotes the expression of \(\phi_{Ok} \) of order \(N \) with respect to this state. Obviously, we have \(\phi_{Ok}^s = 0 \) because at the order 0, \(\phi_{Ok} \) may depend only on \(\lambda_i \). We shall see that, by imposing eq. (19) at order \(N \), we find \(\phi_{Ok}^{N+1} \) except for terms not depending on \(\lambda_i \) which, on the other hand, can be also found with the representation theorems [6], [7]. In fact, eq. (19) at the order zero gives

\[
0 = 2 \frac{\partial \phi_{Ok}^s}{\partial \lambda_i} \lambda_i^{\lambda_i} ;
\]

from which \(\phi_{Ok}^s \) doesn’t depend on \(\lambda_i \). But we have already seen that \(\phi_{Ok} = 0 \) so that up to the order 1, we have that \(\phi_{Ok} \) is given by

\[
\phi_{Ok}^1 = f_1(\lambda_i) \lambda_i^{\lambda_i} ;
\]

with \(f_1 \) arbitrary function. Eq. (19) at the order 1 is

\[
0 = 2 \frac{\partial \phi_{Ok}^s}{\partial \lambda_i} \lambda_i + \left(\frac{\partial \phi_{Ok}^s}{\partial \lambda_{i<\alpha>}^{\lambda_i}} + \frac{\partial \phi_{Ok}^s}{\partial \lambda_{i<\alpha>}^{\lambda_i}} \psi_i \right) \lambda_i^{\lambda_i} + \left(2 \frac{\partial \phi_{Ok}^s}{\partial \lambda_{i<\alpha>}^{\lambda_i}} \delta_i^{\delta_i} + \frac{5}{2} \frac{\partial \phi_{Ok}^s}{\partial \lambda_{i<\alpha>}^{\lambda_i}} \delta_i \right) \lambda_i^{\lambda_i} ;
\]

from which

\[
\phi_{Ok}^2 = f_2(\lambda_i) \lambda_i^{\lambda_i} ;
\]

and so on.

Acknowledgment. We thank an anonymous referee, for suggestions which helped in improving the quality of the article.

REFERENCES

Dipartimento di Matematica,
Università di Cagliari,
Via Ospedale 72, 09124 Cagliari (ITALY)
e-mail: cristina.carris@tiscali.it
clmacis@tiscali.it
scanoa.ericc@tiscali.it