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Abstract An exact macroscopic extended model, with many morments, for ultra-
relativistic gas has been recently proposed in literature. However, a further con-
dition has not been imposed, even if it is evident in the case of a charged gas
and when the electromagnetic field acts as an external force; in the present paper
we exploit it and prove that it results in many identities and in residual condi-
tions which allow to determine the arbifrary single variable functions present in
the general theory. The result is that they are polynomials determined except for
a corresponding number of constants. These are arbitrary constants, so that the
macroscopic model remains still more general than the kinetic model.
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Entropy Principle
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1 Introduction

In order to describe the context to which this work applies, let us consider the
Vlasov equation I3] multiplied by the rest particle mass m, i.e.,
of

d a
p‘“m +eF f‘pﬂsf—);:(}, (LD
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52 E Demontis, S. Pennisi

where F®* is the skew-symmetric electromagnetic tensor which can be decom-

posed as

0 Ey- Ey K
—FE 0 Hy —H»
—Fy —Hy 0 H
—F3 Hy —H 0

in terms of the electric field E; and the magnetic field H;. Moreover, f is the dis-
tribution function, ¢ the charge and p* the four momentum satisfying the relation
p*p,. = —m? (the light speed has been taken as unity). We neglect here the term
due to collisions between the atoms, which can be found in refs. [3], [6] or [4],
because it does not effect our following considerations. Obviously, if F®* =,
the eq. (1.1} is the Boltzmann equation. If we multiply the eq. (1.1) by p™ - -- p®,

with i going from 0 to a fixed N, and integrate with respect to dP = , /—ug‘—I‘i'fpi’:—d&3
(the invariant element of momentum space), we obtain the fields equations (see the
Appendix A for more details) :

For —

aaArmq Y - nef;'(al MAHZH-Q")#F (1.2)

where the following definition has been used
AT [ FPEp - pdPp, (1.3)

which is the generic moment of the distribution function; obviously, we have the
conservation laws of mass, momentum-energy. Now the entropy priaciple {see,
for example, [5]) imposes that

=0 >0

for every solution of the system (1.2), with A% the eniropy-(entropy flux) density
and o its production. This is eguivalent to assume the existence of the symmetric

Lagrange Multipliers %', ..., such that

!
o
T L

T 93g,..p, PUBe
(14)

N .
Z ne Eal“'auFal MAQZ'"“M“‘ 2 0’
=1
where £'® = Zo AT p% and Pgi‘_'_"g: is the constant tensor, symmetric
with respect to a; and e, and such that Pgl‘g;'_'_g:: gajay = 0. (Its presence is mo-
tivated by the fact that the trace of eq. (1.2} gives again eq. {1.2) but with n —2

instead of r). Now, if the electromagnetic field acts as an external force, the resid-
ual inequality (1.4); is linear in F),., so that it would be violated unless

N
S as-le gl g =

n=1
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On a further condition in the macroescopic extended model for ultrarelativistic gases 53

We want to see the implications of eq. (1.5} also for an ultra-relativistic gas. This
is the first step in order to find the solution of eq. (1.5} in the case m # 0. The

symmetry condition %L—Pa']azma" =0 has been exploited in [1] and the result

B Blﬁz"'ﬁn
is that #'® is determmed in terms of an arbitrary function F(Xg,X1,..., Xy) as
fa =fF(2,235£p5’,--- =2,8|~-,8Arpﬁf __,pﬁN VO dP. (1.6)

It remains to impose eq. (1.5) which has until now never been imposed, except for
the particular case N = 2 (see ref. {2]). Itis the object of the present paper and will
be exploited in the next section. The result can be written in a simpler and elegant
way; this will be the subject of the section 3 and the result is subsequent eq. (3.6)

expressed in terms of a numerable famﬂy of functions G restricted by eq. (3.1).

This equation determines G except for G (XO,XI) and for a numerable family of
functions of the single variable X;. However, in spite of this, H'® is determined
except for its value at equilibrium and for a numerable family of constants; this
is because F has to be integrated in (1.6) to give #'®. The proof will be given in
section 4 and the result is what we expected, because of the case N =2 in [2].

2 A family of selutions of condition (1.5)

Let us consider the problem of finding a function G(Xy, X1, ..., X~) such that

d
53?255%, with n=0,1,--- ,N—1. 2.1}
n nd-1

Obviously, this problem imposes conditions alse on the function F (integrability
conditions). Tts importance can be seen through the following

Theorem 2.1 If the conditions (2.1} are saiisfied, also condirion (1.5) holds as
their consegquence.

Proof By defining f = [ G{Xp,X1,. .., Xn)dP and by using eq. (1.4); and (1.6),
we obtain

BTe of
o cx;.” andP:[ cral”‘ H”dP:W,
Pep AR G R

for n=0,1,...,N—1, 1ie.,

Au]...aﬁ _ _az‘,L, for n —= 172’ .. .’N-
.0y

By using this, eq. {1.5) becomes

N

af % (25 a’n
0“2”32 F a0 = Z /aXn 2 ppldP I, 22)

oryeeay 1
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54 F. Demoniis, S. Pennisi

Now, the identity 0 == [ B}%T(Gp”)dP can be expressed as

{Gp .
0= / a (Y]) . f(z aX “In’-’-?"'#np'uq"'p#’IP#+GS£ZL|)dP

whose skew-symmetric part is exactly the condition (2.2)! Consequently to exploit
the condition {1.5), it suffices to impose the eq. (2.1). O

The equation (2.1} defines the function G by integration and there remain the
integrability conditions

a?F I2F

= o forhk=1,...N. 2.3
IX0Xe, 9%, jox, ormA=h- 2.3)

M
So let us exploit these conditions and let F denote the homogeneous part, with
degree M, of F in the variables X5, ..., Xy. (This expansion of F 1s physically

significant because X, ..., Xy are zero at equilibrium). Obviously, F can be ex-
pressed in the form

v 2 _
F= 2 _,ﬁ'lh---lM(XO:X])XiJ"'XfM= 2.4

Bl

where fi i, ., is symmetiic because it multiplies the symmetric term Xy - Xy
After that, we can see that the following theorem holds:

Theorem 2.2 The functions yry, (Xo, X1), with s going from 1 to (N —2}M -+ 1,
exist such that '

i1 -boctiog 20441
Sivipiyg = gy (2.9

_In other words, fi 5.4, depends on its indexes only through their sum! The proof
of this Theorem is reported in Appendix B.
After that, we see that eq. (2.3), by use of eq. (2.4), is already satisfied for
0
hk=3,...,N. Obviously, from eqs. (2.4) and (2.5) it follows F = a,tl(l}. It remains
to impose eq. {2.3) in the cases where at Iéast one between % and k is less than 3.
The result is expressed by the following

Theorem 2.3 The functions i}, are determined in terms of the previous order
ones, through the following egs. (2.6) - (2.9), except for N — 1 functions of the

@ Springer




On a further condition in the macroscopic extended model for ultrarelativistic gases 55

single variable X,

lp‘rw:'ai)(]lpﬂjp VRl r<NM-1D)+2-2Mand M > 2, (2.6)

Jd a .,
370%1: a—XTd’MI’ Yr i NM - 1) +3-2M<r<(N—2M+1andM > 2,

2.7y
a Fo__ a ye| . _
*a?ul/flfa—x,l T, Vri2<rEN L, (2.8)
e L
a—&)’ﬂ] = ;)—le%- (2.9)

In otherwords, eq. (2.6) determines some of the functions i}, the remiaining N —1
ones are determined by egs. (2.7 and (2.8), except for N — 1 functions of the single
variable X, arising from integration. At last, eq. (2.9) determines Wt in terms of

0
F excepr for a function of X\, arising from integration.

Proof Letus begin imposing eq. (2.3) in the cases where only one between 4 and
k is less than 3; for the skew-symmetry of eq. (2.3), it will suffice to consider the
cases with k > 3, Let us begin by considering eq. 2.3) withk=1,£=3,...,N
and at the order M — 1; obviously this is possible only for M > 1. The result, by

o ) o
using eq. (2.4), is Uiigipg _ Mo-vigins ,i.e., for eq. (2.5),

2% X

J d .4 . .
ﬁ;gbj,, = a—Xlz,!rM , foreveryrsuchthat2 <r < (N=2)M+1. (210

In other words, each i/}, (except that with the lower value of r, thatis = 1) can
be obtained from the previous one, except for an arbitrary function of the single
variable X arising from integration. '

Let us exploit now eq. (2.3) at the order M —2, for k=2 and A =3,.. ., N.

N - d i, - .
By using eq. (2.4) it becomes —% = flh-1)2,i3...0pgy > IS, for eq. (2.5), is

equivalent to the above eq. {2.6). Obviously, it holds only for A > 2. The results
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{2.6) and (2.10) can be described through the following two columns.

R !‘{)J
—1 M
2 2
!'[fM'fI M
r r
Way Yy
il r+1
"’IIM 1 l/’rM
N(M—)+2—2M N —1)+3-20
wM’-—l !‘&AM
N1 )-+3--2M N(M—1)43-2M
Gari Pt
MN-2)+1
M

Eqg. (2.10) shows that the derivative with respect to X of each element, in the
two columns, is equal to the derivative with respect to X of the previous one, in
the same column; this holds except for the first term for which a previous one
does not exist. Eq. (2.6) shows that each term of the second column is equal to
the derivative with respect to Xy of that in the first column, but in the siibsequent
row; this except for the terms which have not a subsequent one in the first column.
The problem arises to prove that, for such terms, eq. (2.10) is an identity. This is
the case, in fact, forr=1,...,N(M — 1) +2 — 2M the derivative of eq. (2.6) with
respect to Xp is

02 d

32
~ox? Vi = aX

Y 4 r—1
X, Wie = aX10Xy ax, M

U'/H- I

which is just eq. (2.10)! (Here the passage denoted by (*) follows from eq. (2.10)
with M — 1 instead of M and r+ | instead of r. Similarly, the passage denoted
by (**} follows frem eq. (2.6) with »— 1 instead of ). For the remaining terms
eq. (2.10} has been reported in eqgs. (2.7} and (2.8). There remains to exploit eq.
{2.3) when both h and £ are less than 3; for the skew-symmetry of eq. (2.3) it will
suffice to consider k = 1 and / == 2. In this case eq. (2.3) at the order M — 1 and by
using eq. (2.4) is
a2
a_XOfoz-"fM - a_X?ﬁzij’

which, by eq. (2.5) becomes

a*
ai&)if]};f = ?1,054_1, forevery rsuch that 1 <r < (M- 1)N+3-2M,
(2.11)

In other words, the derivative with respect to Xy of each element in the second
column is equal to the second derivative with respect to X of the corresponding

‘Q_:I Springer




On a farther condition in the macroscopic extended medei for ultrarelativistic gases 57

element in the first column, as long as this corresponding one exist. But, for r =
2 (M — 1)N +3 - 2M, from eq. {2.10) we have

a ro_ a —1 782 r
a—%l}'ﬂw = a—XI‘%"M = a—Xlg#'fM—l

(in the last passage, eq. (2.6) with r — 1 instead of r has been vsed). This proves
that eq. {2.10) is an identity for such values of r. It suffices then to impose it only

forr=1,1i.e.,
d a
% Y= W&Xf Vai1-

But, on the other hand, at least for M > 1, we have

d B L s 32 |
B?OI/JM = m%/f—l = m‘f’mq

(in the first ?assage eq. (2.6) has been used, while in the second one eq. (2.10) is
useful). Consequently, eq. (2.11) is always an identity, except for the case M = |
and r = 1, which is reported in eq. (2.9). This completes the proof, [

Summarizing the results, we have that every order M is determined by (N —
2)M + 1 functions of Xy and X;; some of these are determined in terms of those
in the previous order and the remainders N — 1 are linked to the previous ones
by (2.7) and (2.8) which determines them except for N — 1 functions of the sin-
gle variable X, arising from integration. In the next section these results will be

expressed in a simpler and elegant way.

3 A simpler expression of the resulis

A simpler and more elegant way to express the previous resualts is to consider the

numerable family of scalar functions G {Xo, X1) for { going from O to oo, linked
between themselves only by

I S

= G==0G. 3.1

9%, G X, G (3.1
S

This determines ‘G except for an arbitrary function of the single variable X, aris-

ing from the integration with respect to Xp. The utility of these functions can be

seen in the following :

Theerem 3.1 The conditions (2.6) - (2.9) in Theorem 2.3 are satisfied by the fol-

lowing functions
aM A —1

1 :‘:{f = aT{W (3.2}

Moreover, expression (3.2) is unigue, i.e., this formula can be used withour losing
generality.
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38 F. Demontis, S. Pennisi

Proof 1tis easy to see that the functions (3.2) satisfy the conditions (2.6) - (2.9), so
that it remains to prove uniqueness. To this end, we proceed following an iterative

procedure. .
1. Firstly, we note that our property holds when M = 0. In fact, in the previous
0
section no restriction has bheen found on F, the expression of F at the order

G
zero; we have only defined ¢} =F. Therefore, eq. (3.2) holds with M =0

0 0
(from which r = 1), G=F.
2. Note that the property holds also when M = 1. In fact, for this case we have
found, in the preceding section, that

) " a? 2
R % S
dXa L7 ox ]2 !
d .1 J
“é}'(; ; :E(ﬁ}i, for r= 1,...,N—2. (33)
The first one of these is the integrability condition of the problem
3G _ oF
a—;% = 3%, ie.,eq. (3.1) withi=0,

96—yl e, eq (3.2 with r=M =1,

1 .
and guarantees ihe existence of the function G. Similarly, eq. (3.1} with i = F
andeq. 3.2y withM =1, r=7+1 are

o .
IG _ 96
X X’
Pt _
4G __ ¢r+1
ax, — ¥
whose integrability condition is 2g_ 2 or, because of eq. (3.3) 2g_
g ¥ aXiz -3 » : 4. (2-2)2, aXlz

gg’é, which is the derivative with respect to X; of eq. (3.2) with 7 instead of

rand M = 1. In other words, if we have proved eq. (3.2) with M = | and
v < 7 (and this we have done for #= 1) the above passages show that eq. {3.2)
will hold also with M = 1 and r = F+ 1. This completes the proof of the case
M=1.

3. Let us suppose now that our property holds for M < M (we have already proved
this when M = 1) and let us prove it for M =M + 1. For r=1,..., (N - 2)M
we have that :

: M1
F a r_—H N a

1 ja fr QXPH

where, in the first passage eq. (2.6} of the previous section has been used,
while the second passage takes inte account eq. (3.2) with M instead of M
ad r 4 1 instead of 7. The result proves eq. (3.2) with Af - 1 instead of M,

r+M
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On a further condition in the macroscopic extended model for ultrarelativistic gases 59

but only for the above mentioned values of r. For the other values, Le., r =
(N=2)M+1,...,(N—2)(M+1)+1, the functions ¢ were restricted On]y by

é}a[ﬁg/:ur] {thJr] (34)
1t follows that
ey N S ey
aX(} M1 aXiM+l aX} M+l Xf‘/ﬁkiaXO

2 BM'H .

— ( r—1 _ Gr«!wMﬁl) ={)
8X1 M1 aXz‘/_I+l

1

b

where, in the first passage eq. (3.4) has been used, in the second one eq. (3.1),
and the result is zero if we suppose that eq. (3.2) holds with M 41 instead of
M and r— 1 instead of r. Consequently, we have

aMH

¥ M
Wigy — Py G = (X)), (3.5)

But G™*# was obtained from eq. (3.1), i.c., from o 2_Gr+i — 09(1 Gr¥i=1 ex.
cept for an arbitrary function of the single variable Xj, ie.,

Gr+M ér+M(XO,X1)+,U.(X1)

Therefore, if we choose p(X) ) between the solutions of pria #(Xl) —n{X1),
aM 1
BX{W_H
G ingiead of GMHY Obviously, the hat (*) can be omitted becanse it was
sufficient, for our purposes, to find one of these functions. In this way, by sup-

posing that eq. (3.2) holds Wi[h_M 41 instead of M and r — 1 instead of r, we
have proved that it holds also for the same index r.

G _which is eq. (3.2) with M+ I instead of M and

itfollows ¢ | =

This completes our proof of uniqueness. O

Before ending this section, we note from eq. (3.2) that to determine F up to the
0 4 (N-1)M _
order M, we need only the (N — 1)M + 1 functions G, G,..., G . In other

words, even if the functions C'F are elements of a numerable family of funections,
up to the order M only a finite number of them oceur, ie., (N — 1)M + 1. From
eqs. (2.4), (2.5) and (3.2) it follows

w 2N
Fe 2 z 1 M []-5‘----}-JEM—M X oo X (3 6)
M1 aXM R '

M=01i),...,iy

A further simplification will occur for #® and will be shown in the next section.
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60 F. Demontis, S, Peanisi

4 The contribute to 5 of the arbitrary functions of X; arising by
integrating eq. (3.1)

Let us see the effects of the arhitrary functions, of the single variable X, arising
from integration of eq. (3.1). They are expressed by the following two theorems:

Theorem 4.1 The function h’“, is determined except for o numerable family o
» P ¥

H
consiants, even if the functions (G in eq. {3.1) are determined except for a aumer-
able family of single variable functions.

Theorem 4.2 A particular solution of eq. (3.1) is given by

g}:G(X@+X1), 4.1)

i di-k X\ yick
G(Xo+X 9
6=6% ”+gk*ﬂﬂhkxk)0—@!

where G(X) is an arbitrary single variable function and {cy} is a numerable famn-
ily of arbitrary constants.

Proof (Of Theorem 4.1.) Let us call é}.q (X1} the arbitrary function arising from
integration of eq. (3.1), for i = i— 1, with a given 7 it contributes to G fori > Fthe
supplementary term

X o
= ——Gi(X
1*~)'8X‘—’ S0

how it can be easily seen with the iterative procedure. Consequently, it contributes
to F, according to eq. (3.6), the supplementary term
an+...+iM—? . X‘ll"‘---JrfM*M*;

1
B 1SS
()Xflf- g =i

oo 2, N
Z Z Xi|"'X!'M:

M=0i,.. ,M

(i +...+ig—M—1D)
R (4.2)
where, only the terms with i) - ...+ iy = i+ M have to be considered. Let us see
how it contributes to A® according to eq. (1.6). But, {irstly, we have to evaluate
this equation in one of the reference frames where 3g = (¥,0,0,0) with y =
/2 g2PB. Letus also define p¥ = 0, ¢ = lp'B from which we have g° = 1 and,
moreover PP pp=0 becomes g'gi = 1. We can introduce spherlcal coordinates,

1e N7 —Qsmﬁcosqﬁ p* = psinfsing, p = gcos @ (from which g* = sinflcos ¢,
g> =sinfsing, ¢° = cosf) with0 < 0,0 <8 <7, ¢ < ¢ < 27 In this way, the
integral (1.6) becomes

] 27 7T
@ :/ (!Q[ dc,bf F (Z,yg.,...,Zgl...ﬁNqﬁ? ”'L)“BNQN) g% /~g0* sin6db.
0 0 0
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Now we can see that the term {4.2) contributes to & ® the supplementary term
ai1+...+f‘w—f

; 27 pm pee T S 1
e = f d / a6 S
0 p= 0;1, 8X”+ =

Xr|+ iy — M i
0

(i — M=)

;(Xl )J gi1+-"+f,w +2
X=y0

Y .- Yi,q%/—gsinbdo,

where ¥; = Zﬂl...‘giq'sl -+ gPi = p7iX; This term can also be written as

) 2 o 2N X11+ iy —M—7
hE =[ d / dé Y- ¥
' 0 ¢ MZ"OHE' MT (“ +.tiy—M— ’)' i IM

4o, +eetipg 43
v_gsulgkl] IM-}; (i M ),

with
aii+..»+iM*;. .

ﬁc(xﬂ (o)t g,
X Xj=vyo

i /
o

By using the change of variable ¢ = XT‘, this last one becomes

A - ail +.tipgg—1 t
v — / o Gix)
. 0 BXI]"F g1

Xt gx (4.3)

which is a constant. Obviously, G1(X;) must be such that the integral be conver-
gent. The eq. (4.3) can be written as

=f L e -
ki:f {_‘9__(;1( )J X2 ax,, forizi+M.
5] aXll 1

But, integrating by parts, we have

gi-i—1- 2 =
aXi_f_l G;'(Xl) Xll
H

oo ai—f—-l
_/0 [ G )} X i+ 2)dx; =

—(ir2r

k*’:’

0

from which

Fom (D (+2)(i+ 1) f+3-nk" = (1)r~(~i—(_;—§%k”-

This last one, for r == { — i — M becomes

K== G+2+m)

_@_ Springer




62 F Demontis, S. Pennisi

This result shows that all these constants are determined in terms of that with a
lower order number of indexes, i.e.,

i

kF+M__ M G ( ) X’f*’erde
- 0 aXﬂ/f $ 1 I

But we can continue to integrate by parts, obtaining

(1+2—€—M

P M

/ G? (X))X] 2 g% (4.4)

which is a constant; it is also arbitrary because if EM g assigned, we can choose

I i+2 : X, -]
Gs— ( )M ( ) kt—}-Me X1X1 , (4_5)

(F4+-24+M)!
and eq. (4.4) will become an identity. O

We note also that the expression (4.5) guarantees also the convergence of all the
previous integrals and the calculations performed regarding them.

So we have found that every arbitrary function of the single variable X (aris-
ing by integrating eq. (3.1)) contributes to K™ a term determined except for the

arbitrary constant k¥,

Proof (Of Theorem 4.2.) By substituting eq. (4.1) in eq. (3.1), it is easy to see that
these last ones are satisfied. O

5 Conclusions

We consider very interesting all these results, firstly because they fill a gap in a
literature on this subject. Only particular cases (N = 2) have been studied previ-
ously and for this case the present results coincides with those already known.
Here we have considered the macroscopic model and it includes the kinetic one
[1] as the particular case with F(Xp,X1,...,Xn) = F(Xo + X1 + ...+ Xy), so that

Fuinein = {agide— ) =F)(Xo+X). This result, for eq. (2.5) implics g, =
M S eg.

FM) (X, -+ X;) for all values of 5. Finally, eq. (3.2) yields G=F (Xg + X;) for all
values of /. This fact gives a further confirmation to the present results, because
it is well known from other contexts that the kiretic approach is more restrictive
than the macroscopic one which we have here considered. It is interesting that
also the particular solution (4.1) is still more general than the kinetic approach;
this last one is the particular case with ¥ = G and c; = 0. There is the possibility
that eq. (4.1) is also the general solution, but we leave this investigation for future
considerations.
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On a further condition in the macroscopic extended model for ulirarelativistic gases 63

A Appendix: proof of eq. (1.2)

In order to prove eq. (1.2}, let us consider the Vlasov, equation (1.1). Mu]tiplying this equation
V72 13
by p™ .- p® and integrating with respect to dP = 1/—-35‘:'”—5;,%1‘”—, we find

e Of af
L B & (< ST Sl =
fp P g AP eF fpﬂp PG dP =0 (A1)

It is casy to observe that the first integral in the left-hand side of eq. (A.1) can be written as

a (3
B—ngfp Lo ptptdr,
because p™ --- p™ do not depend on x*. Moreover, the second integral in the first member of
eq. {A.1) becomes

a 3 & a o o,
eFa,u/a_pa(p#Pm"'pa”f)dp_EF #[apa (P'LLP l,..p n)fdP

d
— eFﬂ”]éng (ptp™ "'p“"f)deeF“#/(nﬁ— l)gg'“pm ...Pﬂn)f'dR (A2}
Because in the kinetic theory is assumed that the distribution function f is such that

f FpHptee p™ < oo

the first integral in the second member of eq. (A.2) is equal to zero, while the second integral in
the second member of eq. (A.2} can be expressed as follows

*"-’Fa#gﬁffpal “‘Pandp_ng};-a#ffggalpuz...pan}deR {A3)

In the preceding expression the first term is squal to zero becanse F** is skew-symumetric and,
hence, has zero trace. Then, eq. (A.1) can be written as

2 «
s [ £ ppt dP—neF?, [ fglft p o pphap ~ 0 (A4)

which is, recalling definition {1.3), equivalent to
d AR neF@ #Aaz"'“"')” =0.

This equation coincides with eq. (1.2) and this completes the proof.

B Appendix: proof of Theorem 2.2

0
Obviously, eq. (2.5) is trivial when M =0, 1; in fact, for M=0 it amounts to F= i,[/[') which can
be considered the definition of ¢}, while for M =1 it amounts to f;, = ljr'l'_l which can be

considered the definitions of rﬁ} , lﬁ%,. . .,a,[r?/’I. Then it remaing to prove eq. (2.5) when M > 2.
Eg. (2.3) at the order M — 2 and with &, £ =3,...,N and by using eq. (2.4) gives

ok iny = Jo Lk iy g - (B.5)

This means that we can subtract an unity from an index (which is not 2) and add it to another
index {which is not ¥); the result remains the same. Thesn we can proceed in the following way:
Let us choose a couple of indexes which are not 2, neither N; after that, let us subtract an unity
from the lower one and add it to the greater one. We repeat this procedure mere times until
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that the lower index becomes 2 or the greater one becomes N. After that, we can do the same
thing with another couple of indexes. At the end, we will find that f;, ., is equal to one of the
following terms

P a N Nk withk=3..  Nandj=0, . M (B.6)
N
Jtimes M- j—llimes
We prove now that the sum of the indexes of each of these term is different from that of the
other ones and, therefore, identifies this term (Note that the above procedure leaves unchanged
the sum of the indexes). In other words, let us see if it is p0551ble that 2+ (M — j— )N +k=
27 + (M~ j — )N+ k'. This is equivalent to

k=K =N -2~ ), , B.7)
from which |k —&'| = (¥ — 2)|j — /| trom which it follows
{lkfk’izrv—z ifli-7flz1,
|k—&|=0 iffj-jl=0.
But

K=3,...N

Consequently, it is not possible that |7 71 = 1, otherwise we would have N-2< k¥ <

N — 3 which is not possible; then we have | — j| =0, from which j = j' and from ¢ eq. B.7)it
foliows & = &'; this completes the proof.

At last, let us see that the sum of the indexes in the terms {B.6) is whatever number r between
2M and NM. In fact, from

{k:3""’N sothat [k —&'{ <N-3.

2+ (M—j—1)N+k=r, (B.8)
we have (N —2)j+ N —k = MN — r whose right-hand side, thanks to 2M < r < NM, is any
number between 0 and (N — 2}, it follows that j = [MNE ] and N -~ k is the remainder of the
division of MN —r and N —2 (to this end let us remember that 0 < N — &k < N — 2, because

2<k<N).
Now that this other proof is completed, we can define

Y = f2 2 N.N©
\....v-./

;Umes M—Jj— 1 omes

with f, k and s defined in terms of r by eq. (B.8)and by s = r—2M + 1. From 2M < r <NM it
follows 1 < s < (N—2)M + 1. This allows to deduce eq. {2.5} from eq. (B.5) and (B.6).
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