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Scott Russell

“...I was observing the motion of a boat which was rapidly drawn
along a narrow channel by a pair of horses, when the boat suddenly
stop- not so the mass of water in the channel which it had put in
motion; it accumulated round the prow of the vessel in a state of
violent agitation, then suddenly leaving it behind, rolled forward with
great velocity, assuming the form of a large solitary elevation, a
rounded, smooth and well-defined heap of water, which continued its
course along the channel apparently without change of form or
diminution of speed. I followed it on horseback, and overtook it still
on a rate of some eight or nine miles an hour, preserving its original
figure....in the month of August 1834 was my first chance inteview
with that singular and beatiful phenomenon which I have called the
Wave of Translation.....The fisrt day I saw it it was the happiest day
of my life ”
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Russell’s experiment

Scott Russell had success in reproducing what he saw and, moreover, he got the
following (empirical) relation

c2 = g(h + η),

where g represents gravity, h the channel’s deep and η the maximum height of the
wave.

Airy e Stokes

Boussinesq (1877)
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Russell’s experiment
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Korteweg-de Vries

Korteweg and De Vries obtained the following equation (known as KdV equation):

ut + uxxx − 6uux = 0

which describes wave propagation (in one dimension) where the amplitude of the
wave is small with respect to the other quantities (deep and wave length).

Moreover, they found a class of exact solution of this equation

u(x , t) =
− 1

2c

cosh2 x − ct − a
.

....Scott Russell was right!
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Fermi-Pasta-Ulam’s puzzle and Mary Tsingou
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Fermi-Pasta-Ulam’s puzzle and Mary Tsingou

...Debye (1914)...

FPUT tried to study numerically a system with 64 (sixty-four) springs connected
in a nonlinear way. This system is described from the following difference equation:

mẍj = k(xj+1 + xj−1 − 2xj)[1 + α(xj+1 − xj − 1)], j = 0, 1, . . . , 63.

They were sure to obtain equipartition of the energy between the springs, instead...
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Kuskal and Zabusky
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Kuskal and Zabusky

In 1965, Kruskal and Zabusky, solved the FPUT’s puzzle.

They observed that, taking the limit in an appropriate way, the FPUT’s model, is
given by the KdV equation,

ut + uxxx − 6uux = 0

which admits a soliton solution. By using initial periodic conditions, Kruskal and
Zabusy justified the numerical results obtained by FPUT!

They introduced the word soliton.
How soliton interact each other?
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Solitons and...Cinema

Many thanks Barbara Prinari who gave me the following movie
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1967: KdV e Inverse Scattering Transform

In 1967 Gardner, Greene, Miura e Kruskal, in order to solve the initial value
problem for the KdV equation, introduced a method known as Inverse Scattering
Transform (which could be considered the analogous of the Fourier transform for
linear ODE).
The IST is not a direct method...it works by associating the Schroedinger
equation to the Cauchy problem of the KdV:

−ψxx + u(x , 0)ψ = λ2ψ, x ∈ R.

given u(x , 0)

direct scattering problem
with potential u(x,0)−−−−−−−−−−−−−−→ S(λ, 0)ySolution NPDE

time evolution of
scattering data

y
u(x , t) ←−−−−−−−−−−−−−−−−−−−

inverse scattering problem
with time evolved scattering data

S(λ, t)
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1967: KdV e Inverse Scattering Transform

GGKM were also lucky because three years before their work, Faddeev in 1964
had had success in solving the inverse problem for the Schroedinger equation.

1. Direct Scattering consists of: Find the so-called scattering data
{R(k), {κj ,Nj}Nj=1} of the Schroedinger equation with potential u(x , 0).

fr (k, x) =


1

T (k)
e−ikx +

R(k)

T (k)
e ikx + o(1), x → +∞,

e−ikx [1 + o(1)], x → −∞.

2. Propagation of scattering data: the scattering data evolve in time
following the equations

{R(k), {κj ,Nj}Nj=1} 7→ {R(k)e8ik3t , {κj ,Nje
8κ3

j t}Nj=1}.
3. Inverse scattering consists of: (Re)-construct the potential. To do that:

1) Solve this Marchenko equation

K (x , y) + Ω(x + y) +

∫ ∞
x

dz K (x , z)Ω(z + y) = 0,

where Ω(x) =
∑N

j=1 Nje
−κjx + 1

2π

∫∞
−∞ dk e ikxR(k) and

2) get u(x , t) from the relation u(x , 0) = 2 d
dx K (x , x).
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Inverse Scattering Transform: only luck?

Few years later, it became clear that many other nonlinear evolution equation
could be solved by the IST:

Nonlinear Schroedinger equation (1972, Zakharov and Shabat)

sine-Gordon (1973-74, Ablowitz, Kaup, Newell, Segur or Zakharov)

Manakov system (1973, Manakov)

AKNS system (1974, Ablowitz, Kaup, Newell, Segur)

Camassa-Holm equation (1992, Camassa e Holm)

Degasperis-Procesi equation (1999, Degasperis e Procesi)

the list is not complete...

slide 15 di 47



Examples of integrable equation

ut + 6uux + uxxx = 0, Korteweg-de Vries (KdV) equation

uxt = sin u, sine-Gordon equation

i ut + uxx ± 2uu†u = 0, Nonlinear Schrödinger (NLS) equation,

ut − uxxt + 2ωux + 3uux − 2uxuxx − uuxxx = 0, Camassa-Holm (CH) equation,

uzz +
∂

∂x
(ut + 6uux + uxxx) = 0, Kadomtsev-Petviashvily (KP) equation.
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IST

We call integrable each Nonlinear PDE to which can be applied the Inverse
Scattering Transform.
The IST is a very powerful method which allow one to solve the Cauchy problem
of many “different” Nonlinear PDE.
All the equations (systems) solvable by IST are caracterized by important
properties such as:

They admit a class of exact solution: an interesting sub-class of this type of
solution is given by the soliton solutions .

They are integrable Hamiltonian systems, in the sense that if the IST is
applicable then it is possible to find a canonical transformation from physical
variables to angle-action variables.

They have an infinite number of conserved quantitities (
∫

f (x , t)dx is a

conserved quantity if
d

dt

∫
f (x , t)dx = 0).
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Lax pair

Establishing if a given PDE is integrable (in the sense specified before) is not a
trivial task. But, if we know that a system of PDE is associated to a LODE
system, we can establish its integrability by using the method of the Lax pair.

Lax’s method can be described as follows:

Given a system of LODE L, find A such that

Lt + LA− AL = 0.

By imposing the last equation, we obtain the NPDE associated with the system of
LODE (from which we departed).
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Integrability: One example

1 Given

L = − d2

dx2
+ u(x , t)

try to determine A. If we look for an operator A of the following type:

A = α3
d3

dx3
+ α2

d2

dx2
+ α1

d

dx
+ α0,

the compatibility (Lax pair) condition Lt + LA− AL = 0 leads (choosing
α3 = −4, α2 = 0, α1 = 6u, α0 = 3ux) to the equation ut − 6uux + uxxx = 0,
i.e. the KdV equation.
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Recent developments: the triplet method

Problem: Determine explicit solutions of the (m)NLS equation. We are mainly
interested in an important sub-class of this (explicit) class of solutions: the soliton
solutions

Several methods has been developed to determine analytic solutions of the NLS
equations. Solutions obtained using one of this method not necessarily can be
reconstructed by following another of these methods.

Development of a method, based on the Inverse Scattering Transform (IST),
which is able to give- in a unified way- the solutions obtained by using the
methods so far used.
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IST for the (m)NLS equation

1. Consider the initial value problem for the (m)NLS equation:{
i ut + uxx + 2uu†u = 0,

u(x , 0).

2. The following system of ODE (AKNS system) is related to the (m)NLS
equation:

−iJ
d

dx
Ψ(x , λ)− i

(
0n×n q(x)
q(x)† 0m×m

)
︸ ︷︷ ︸

potential V (x)

Ψ(x , λ) = λΨ(x , λ),

where λ is the spectral parameter, x ∈ R, and J = In ⊕ (−Im). Moreover,
q(x) is a matrix funcion with elements in L1(R).

given u(x , 0)

direct scattering problem
with potential u(x,0)−−−−−−−−−−−−−−→ S(λ, 0)ySolution NPDE

time evolution of
scattering data

y
u(x , t) ←−−−−−−−−−−−−−−−−−−−

inverse scattering problem
with time evolved scattering data

S(λ, t)
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Explicit Solutions

This method is based on the IST and allows us to write the solution through a
matrix triplet (A,B,C ) (of dimensions, respectively, p × p, p ×m e n × p) and
the matrix exponential. This solution has the following form:

u(x , t) = −2CG (x , t)−1B,

where

G (x , t) = e−β + N eβ
†
Q,

β = 2Ax + 4iA2t,

Q =

∫ ∞
0

dγ e−γA
†
C †Ce−γA,

N =

∫ ∞
0

dβ e−βABB†e−βA
†
,
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Examples

It is easy to plot the soliton solutions obtained.

For example, choosing A = (p + iq) where p > 0, B = (1), C = (c) with c 6= 0.
Computing

Q =

∫ ∞
0

dy e−(p−iq)y |c |2e−(p+iq)y =
|c |2

2p
, N =

1

2p
.

Then

q(x , t) =
−2c e4i [p2−q2+2pqi ]te−2x[p+iq]

1 + |c|2
4p2 e−4pxe−4i [p2−q2−2pqi ]te4i [p2−q2+2pqi ]t

= − c

|c |
e2iqx0

2p e i [2q(x−x0+4qt)+4(p2+q2)t]

cosh[2p(x − x0 + 4qt)]
,

where 2px0 = ln(|c |/2p). This the well-known bright soliton solution.
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Two-soliton solution for A = diag(1, 2), B = (1, 1)T , and
C = (3, 2).
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Two-soliton solution for A =
(

2−i −1
0 2−i

)
, B = (0, 1)T , and

C = (1 + 2i ,−1 + 4i). Absolute value

-2 -1 1 2
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2

3

4

5

6
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t��.2, t��.05, t�.1
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Advantages

The advantages to have a solution formula such as this introduced before are
several, for example:

Possibility to get many of the solutions obtained in literature by using
different methods as special case of a unique formula.

Generation of a new solutions.

Solution test useful to verify algorithimics used to solve numerically the NLS
equation.

Extension of the solution formula to matrix NLS system. It is important to
remark that (m)NLS is important because it describes physical system where
the electric field has two components transversal to the direction of
propagation (in optical fiber).
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The triplet method

Let us consider the AKNS system

−iJ
d

dx
Ψ(x , λ)− i

(
0n×n q(x)
q(x)† 0m×m

)
︸ ︷︷ ︸

potential V (x)

Ψ(x , λ) = λΨ(x , λ),

where J = In ⊕ (−Im), q(x) ∈ L1(R).

The IST can be described as follows:

given
u(x , 0) = q(x)

direct scattering problem
with potential u(x,0)−−−−−−−−−−−−−−→ R(λ), λj , Γlj

for j = 1, . . . ,NyIST
time evolution of
scattering data

y
u(x , t) ←−−−−−−−−−−−−−−−−−−−

inverse scattering problem
with time evolved scattering data

e4iλ2tR(λ), λj , e
−4iλ2

j tΓlj
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Direct Scattering Problem

Fl(x , λ) '

{
e iλxJ , x → +∞,
e iλxJal(λ), x → −∞,

Fr (x , λ) '

{
e iλxJ , x → −∞,
e iλxJar (λ), x → +∞.

Fl(x , λ) = e iλJx − iJ

∫ ∞
x

dye−iλJ(y−x)V (y)Fl(y , λ),

Fr (x , λ) = e iλJx + iJ

∫ x

−∞
dye−iλJ(y−x)V (y)Fr (y , λ).

al(λ) and ar (λ) are known as transition matrices and

Fl(x , λ)ar (λ) = Fr (x , λ), Fr (x , λ)al(λ) = Fl(x , λ),

al(λ) = ar (λ)−1 = ar (λ)†
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Scattering matrix

It is convenient to adopt the following notation:

Fl(x , λ) =

(
Fl1(x , λ) Fl2(x , λ)
Fl3(x , λ) Fl4(x , λ)

)
, Fr (x , λ) =

(
Fr1(x , λ) Fr2(x , λ)
Fr3(x , λ) Fr4(x , λ)

)
,

where the blocks in ROSSO are analytic in C+ while the BLU ones are analytic in
C−. Putting:

f+(x , λ) =

(
Fl1(x , λ) Fr2(x , λ)
Fl3(x , λ) Fr4(x , λ)

)
, f−(x , λ) =

(
Fr1(x , λ) Fl2(x , λ)
Fr3(x , λ) Fl4(x , λ)

)
,

we arrive at the following Riemann-Hilbert problem

f−(x , λ) = f+(x , λ)JS(λ)J.

The scattering matrix S(λ) is J-unitary in the focusing case, i.e.,

S(λ) = J
[
S(λ)†

]−1
J:

S(λ) =

(
Tl(λ) R(λ)
L(λ) Tr (λ)

)
.
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Inverse Scattering Problem

To (re)-construct the potentials we follow these steps:

1 Given the scattering data {R(λ, t), λj , Γj(t)}, let us consider the integral
kernel:

Ω(α, t) = R̂(α, t) +
N∑
j=1

Γlj(t) e−λjα

2 By using Ω(α, t), we write down the following integral Marchenko equation

Bl(x , α, t) = −Ω(α + 2x , t)

−
∫ ∞
0

dβBl(x , β, t)

∫ ∞
0

dγ Ω(γ + β + 2x , t)†Ω(α + γ + 2x , t)

3 The potential u(x , t) is related to the solution of the Marchenko equation by
the following relation

u(x , t) = 2Bl(x , 0+, t).
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Marchenko integral kernel

For t = 0, consider
Ω(y) = C e−yAB,

where A is a square matrix of order p having only eigenvalues with positive real
parts and B,C are rectangular matrices of order p × n and m × p, respectively.
Moreover, (A,B,C ) is a so-called minimal triplet, i.e.,

+∞⋂
r=1

ker CAr−1 =
+∞⋂
r=1

ker B†(A†)r−1 = {0}.

A triplet which give a minimal representation for Ω(y) is unique up a similar
transformation (A,B,C )→ (EAE−1,EB,CE−1) where E is an invertible matrix.
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Marchenko integral kernel

In general, the kernel Ω(y ; t) of the Marchenko equation satisfy the following :

Ωt − 4i Ωyy = 0.

The previous evolution law suggests the following choice

Ω(y ; t) = Ce−yAe4i A2tB.

Choosing the Marchenko integral kernel as above indicated, the Marchenko
equation is a separable integral equation and then can be explicitly solved.
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Explicit solutions of the Marchenko equation

Substituting

Ω(y , t) = C e−yA+4iA2tB, Ω(y , t)† = B†e−A
†y−4i(A†)2tC †,

in the Marchenko equation, it becomes

Bl(x , α, t) + C e−(α+2x)A+4iA2tB+∫ ∞
0

dβ

∫ ∞
0

dγ K (x , β, t)B†l e−A
†(γ+β+2x)−4i(A†)2tC †C e−(α+γ+2x)A+4iA2tB = 0.

Introducing the matrices

Q =

∫ ∞
0

dγ e−γA
†
C †Ce−γA, N =

∫ ∞
0

dβ e−βABB†e−βA
†
,

and looking for solutions of the form

Bl(x , α, t) = H(x , t) e−Aα+4i(A)2tB,

we arrive at the solution

Bl(x , α, t) = −CG (x , t)−1e−AαB.
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Explicit solution of the mNLS equation

The matrix G (x , t) which appear in the solution of the Marchenko equation is
express in terms of the matrix triplet (A,B,C )

G (x , t) = e−β + N eβ
†
Q,

where β = 2Ax + 4iA2t. Moreover, G (x , t) is invertible on the entire plane xt
and its inverse matrix satisfy the following properties: G (x , t)−1 → 0 decay
esponentially for x → ±∞ (for each fixed t.)

Recalling that u(x , t) = 2Bl(x , 0+, t) we get the solution of the mNLS

u(x , t) = −2CG (x , t)−1B.

This function exists on the entire plane xt (where it is analytic and exponentially
decays).
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Sine-Gordon Equation

Let us consider the sine-Gordon

uxt = sin u,

where u(x , t) is a real function.

This equation appear in many interesting applicative context such as:

Description of surfaces of constant mean curvature;

Magnetic flux propagation in Josephson junctions, i.e. gaps between two
superconductors;

Propagation of deformations along the DNA double helix.
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Sine-Gordon equation

In this case, we have to solve the Marchenko equation

K (x , y , t)− Ω(y + x , t)† +

∫ ∞
x

dv

∫ ∞
x

dr K (x , v , t)Ω(v + r , t)Ω(r + y , t)† = 0.

The integral kernel of this equation obeys to the following PDE:

Ωyt =
1

2
Ω,

which suggest to make the following choice

Ω(y , t) = C e−yAe−A
−1t/2B

Making considerations similar to those which allow us to get explicit solutions to
the m(NLS) equation, we can determine explicitly K (x , y , t).
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Sine-Gordon equation

Taking into account that u(x , t) is a real function, also K (x , y , t) has this
property. These quantities are related from this relationship:

ux(x , t) = 4K (x , x , t).

Developing the computations we get the following equivalent formulas:

u(x , t) = −4

∫ ∞
x

dr B†F (r , t)−1C † = −4

∫ ∞
x

dr C [F (r , t)†]−1B,

where F (x , t) = eβ
†

+ Q e−βN and β = 2Ax +
1

2
A−1t.

u(x , t) = −4

∫ ∞
x

dr CE (r , t)−1B,

with F (x , t)† = E (x , t) := eβ + P e−βP, and β = 2Ax +
1

2
A−1t.
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The admissible class

It is natural to looking for a larger class including triplets more general than those
considered in the previous slides. In fact, for every triplet in this new class we
want to repeat the procedure illustrated before obtaining explicit solutions of the
sine-Gordon equation.

The triplet (A,B,C ) of size p belongs to the admissible class A if:

The matrices A, B, and C are all real valued.

The triplet (A,B,C ) corresponds to a minimal realization for Ω(y , t).

None of the eigenvalues of A are purely imaginary and no two eigenvalues of
A can occur symmetrically with respect to the imaginary axis in the complex
plane.
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Admissible class

For any triplet (Ã, B̃, C̃ ) belonging to the admissible class A the following
properties are satisfied:

I. The Lyapunov equations Q̃Ã + Ã†Q̃ = C̃ †C̃ , ÃÑ + ÑÃ† = B̃B̃† are uniquely
solvable, and their solutions (invertibles and selfadjoints) are given by:

Q̃ =
1

2π

∫
γ

dλ (λI + i Ã†)−1C̃ †C̃ (λI − i Ã)−1,

Ñ =
1

2π

∫
γ

dλ (λI − i Ã)−1B̃B̃†(λI + i Ã†)−1.

II. The resulting matrix

F̃ (x , t) = e2Ã†x+ 1
2 (Ã†)−1t + Q̃ e−2Ã

†x− 1
2 (Ã†)−1tÑ

is real valued and invertible on the entire xt-plane, and the function

ũ(x , t) = −4

∫ ∞
x

dr B†F̃ (r , t)−1C †

is a analytic solution to the sine-Gordon equation everywhere on the xt-plane.
slide 39 di 47



Equivalents Triplet

We say that two triplets (A,B,C ) and (Ã, B̃, C̃ ) are equivalent if they lead to the
same potential u(x , t).

A natural question is the following: Starting from one triplet in the admissible
class, is it possible to get an equivalent triplet such that the matrices A,B,C are
real, give a minimal representation for the kernel Ω(y , t) and all the eigenvalues of
A have positive real parts?

The answer is: YES, however...

(Ã, B̃, C̃ ) is in the
admissible class

How construct
Equivalent Triplets?−−−−−−−−−−−−→ (A,B,C ) minimal representation

where Reλj > 0
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We have the following:
For any admissible triplet (Ã, B̃, C̃ ), there corresponds an equivalent admissible
triplet (A,B,C ) in such a way that all eigenvalues of A have positive real parts.

In order to construct the transformation which allow us to pass from the
admissible triplet (Ã, B̃, C̃ ) to the final triplet (A,B,C ), it is suitable to consider
the triplet (Ã, B̃, C̃ ) in a partition form:

Ã =

[
Ã1 0

0 Ã2

]
, B̃ =

[
B̃1

B̃2

]
, C̃ =

[
C̃1 C̃2

]
,

where all eigenvalues of Ã1 have positive real parts and all eigenvalues of Ã2 have
negative real parts, and the sizes of the matrices Ã1, Ã2, B̃1, B̃2, C̃1, C̃2 are q × q,
(p − q)× (p − q), q × 1, (p − q)× 1, 1× q, and 1× (p − q), respectively.
For the matrices solutions of the corresponding Lyapunov:

Q̃ =

[
Q̃1 Q̃2

Q̃3 Q̃4

]
, Ñ =

[
Ñ1 Ñ2

Ñ3 Ñ4

]
.
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Triplet in “canonical form”

The equivalent triplet (A,B,C ) is built as follows:

A1 = Ã1, A2 = −Ã†2, B1 = B̃1 − Ñ2Ñ−14 B̃2, B2 = Ñ−14 B̃2,

C1 = C̃1 − C̃2Q̃−14 Q̃3, C2 = C̃2Q̃−14 .

It is possible to refine the construction in such a way that the triplet (A,B,C ) is
in a particular form:

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Am

 , B =


B1

B2

...
Bm

 , C =
[
C1 C2 · · · Cm

]
,

where each Aj is a Jordan block, instead Bj and Cj are in the following form:

Bj :=


0
...
0
1

 , Cj :=
[
cjnj · · · cj2 cj1

]
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Actual research topics

Exact solutions to the Integrable Discrete Nonlinear Schroedinger system
(IDNLS system) by using the IST and Marchenko equations (with Cornelis
van der Mee).

Explicit solutions of the focusing/defocusing NLS equations with boundary
nonvanishing conditions. (with Barbara Prinari (University of Colorado at
Colorado Sprigs and Università del Salento), Cornelis van der Mee and
Federica Vitale (Università del Salento)).

Darboux transformation. (with Tuncay Aktosun (University of Texas at
Arlington) and C. van der Mee).

Su un problema “quasi” integrabile” (Giovanni Ortenzi (Università di
Milano-Bicocca))
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Sistemi quasi integrabili

Consideriamo la seguente equazione NLS with damping

iut + uxx + 2|u|2u = −iγu, γ > 0
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